Citation: | ZHU Y Z, LV Q W, GUAN Y, et al. Low-dose CT reconstruction based on deep energy models[J]. CT Theory and Applications, 2022, 31(6): 709-720. DOI: 10.15953/j.ctta.2021.077. (in Chinese). |
[1] |
BRENNER D J, HALL E J. Computed tomography: An increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277−2284. doi: 10.1056/NEJMra072149
|
[2] |
KALRA M K, MAHER M M, TOTH T L, et al. Strategies for CT radiation dose optimization[J]. Radiology, 2004, 230(3): 619−628. doi: 10.1148/radiol.2303021726
|
[3] |
韩泽芳, 上官宏, 张雄, 等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 118-136. DOI: 10.15953/j.1004-4140.2022.31.01.14.
HAN Z F, SHANGGUAN H, ZHANG X, et al. Research progress of low-dose CT imaging algorithm based on deep learning[J]. CT Theory and Applications, 2022, 31(1): 118-136. DOI: 10.15953/j.1004-4140.2022.31.01.14. (in Chinese).
|
[4] |
TIAN Z, JIA X, YUAN K, et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine & Biology, 2011, 56(18): 5949.
|
[5] |
MA J, LIANG Z, FAN Y, et al. A study on CT sinogram statistical distribution by information divergence theory[C]//2011 IEEE Nuclear Science Symposium Conference Record. IEEE, 2011: 3191-3196.
|
[6] |
ELBAKRI I A, FESSLER J A. Statistical image reconstruction for polyenergetic X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2002, 21(2): 89−99. doi: 10.1109/42.993128
|
[7] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142−3155. doi: 10.1109/TIP.2017.2662206
|
[8] |
LEFKIMMIATIS S. Universal denoising networks: A novel CNN architecture for image denoising[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3204-3213.
|
[9] |
ZHANG K, ZUO W, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608−4622. doi: 10.1109/TIP.2018.2839891
|
[10] |
CHEN H, ZHANG Y, ZHANG W, et al. Low-dose CT via convolutional neural network[J]. Biomedical Optics Express, 2017, 8(2): 679−694. doi: 10.1364/BOE.8.000679
|
[11] |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524−2535. doi: 10.1109/TMI.2017.2715284
|
[12] |
WÜRFL T, GHESU F C, CHRISTLEIN V, et al. Deep learning computed tomography[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016: 432-440.
|
[13] |
CHENG L, AHN S, ROSS S G, et al. Accelerated iterative image reconstruction using a deep learning based leapfrogging strategy[C]//International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2017: 715-720.
|
[14] |
HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. arXiv preprint arXiv: 1611.06391, 2016.
|
[15] |
JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509−4522. doi: 10.1109/TIP.2017.2713099
|
[16] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234-241.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[18] |
BAGUER D O, LEUSCHNER J, SCHMIDT M. Computed tomography reconstruction using deep image prior and learned reconstruction methods[J]. Inverse Problems, 2020, 36(9): 094004. doi: 10.1088/1361-6420/aba415
|
[19] |
KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv preprint arXiv: 1312.6114, 2013.
|
[20] |
DINH L, KRUEGER D, BENGIO Y. Nice: Non-linear independent components estimation[J]. arXiv preprint arXiv: 1410.8516, 2014.
|
[21] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014: 27.
|
[22] |
NOWOZIN S, CSEKE B, TOMIOKA R. F-GAN: Training generative neural samplers using variational divergence minimization[C]//Proceedings of the 30 th International Conference on Neural Information Processing Systems, 2016: 271-279.
|
[23] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning. PMLR, 2017: 214-223.
|
[24] |
蔡宁, 王世杰, 陈璐杰, 等. 基于渐进式网络处理的低剂量Micro-CT成像方法[J]. CT理论与应用研究, 2020,29(4): 435−446. DOI: 10.15953/j.1004-4140.2020.29.04.06.
CAI N, WANG S J, CHEN L J. Low-dose Micro-CT imaging method based on progressive network processing[J]. CT Theory and Applications, 2020, 29(4): 435−446. DOI: 10.15953/j.1004-4140.2020.29.04.06. (in Chinese).
|
[25] |
NIU C, LI M Z, FAN F L, et al. Suppression of correlated noises with similarity-based unsupervised deep learning[J]. arXiv: 2011.03384.
|
[26] |
WU D, KIM K, E L FAKHRI G, et al. Iterative low-dose CT reconstruction with priors trained by artificial neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2479−2486. doi: 10.1109/TMI.2017.2753138
|
[27] |
ZHANG F Q, ZHANG M H, QIN B J, et al. REDAEP: Robust and enhanced denoising autoencoding prior for sparse-view CT reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 108−119. doi: 10.1109/TRPMS.2020.2989634
|
[28] |
LECUN Y, CHOPRA S, HADSELL R, et al. A tutorial on energy-based learning[M]. Predicting Structured Data, 2006: 191-241.
|
[29] |
DU Y, MORDATCH I. Implicit generation and modeling with energy based models[J]. Advances in Neural Information Processing Systems, 2019: 32.
|
[30] |
NIJKAMP E, HILL M, ZHU S C, et al. Learning non-convergent non-persistent short-run MCMC toward energy-based model[J]. arXiv preprint arXiv: 1904.09770, 2019.
|
[31] |
WELLING M, TEH Y W, Bayesian learning via stochastic gradient Langevin dynamics[C]// International Conference on International Conference on Machine Learning. Omnipress, 2011.
|
[32] |
ERDOGAN H, FESSLER J A. Monotonic algorithms for transmission tomography[C]//5th IEEE EMBS International Summer School on Biomedical Imaging, 2002.
|
[33] |
DEVOLDER O, GLINEUR F, NESTEROV Y. First-order methods of smooth convex optimization with inexact oracle[J]. Mathematical Programming, 2014, 146(1): 37−75.
|
[34] |
YIN X, ZHAO Q, LIU J, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE transactions on medical imaging, 2019, 38(12): 2903−2913. doi: 10.1109/TMI.2019.2917258
|
1. |
吴凡,刘进,张意,陈阳,陆志凯. 面向CT成像的深度重建算法研究进展. 中国体视学与图像分析. 2022(04): 387-404 .
![]() |