Citation: | PU S L, XIE H W, GUO H, et al. Coherent beam-forming combined with wiener filter in ultrasound imaging[J]. CT Theory and Applications, 2022, 31(6): 793-808. DOI: 10.15953/j.ctta.2022.043. (in Chinese). |
[1] |
郑驰超, 彭虎. 基于编码发射与自适应波束形成的超声成像[J]. 电子与信息学报, 2010,32(4): 959−962.
ZHENG C C, PENG H. Ultrasounic imaging based on coded exciting technology and adaptive beamforming[J]. Journal of Electronics & Information Technology, 2010, 32(4): 959−962. (in Chinese).
|
[2] |
JENSEN J A, NIKOLOV S I, GAMMELMARK K L, et al. Synthetic aperture ultrasound imaging[J]. Ultrasonics, 2006, 44(8): e5−e15.
|
[3] |
NOWICKI A, GAMBIN B. Ultrasonic synthetic apertures: Review[J]. Archives of Acoustics, 2014, 39(4): 427−438.
|
[4] |
孙宝申, 沈建中. 合成孔径聚焦超声成像(一)[J]. 应用声学: 1993, 12(3): 43-48.
|
[5] |
孙宝申, 张凡, 沈建中. 合成孔径聚焦声成像时域算法研究[J]. 声学学报, 1997,22(1): 42−49.
SUN B S, ZHANG F, SHEN J Z. Synthetic aperture focusing in time-domain for acoustic imaging[J]. Acta Acustica, 1997, 22(1): 42−49. (in Chinese).
|
[6] |
杜英华, 张聪颖, 陈世莉, 等. 合成孔径聚焦超声成像方法研究[J]. 海洋技术, 2010,29(2): 94−96. doi: 10.3969/j.issn.1003-2029.2010.02.023
DU Y H, ZHANG C Y, CHEN S L, et al. Research of synthetic aperture focus technology in ultrasonic imaging[J]. Ocean Technology, 2010, 29(2): 94−96. (in Chinese). doi: 10.3969/j.issn.1003-2029.2010.02.023
|
[7] |
李遥, 吴文焘, 李平. 虚拟源方法应用于B超成像系统的研究[J]. 声学技术, 2013,32(S1): 183−184.
LI Y, WU W T, LI P. A study of B-mode ultrasound imaging with virtual source method[J]. Technical Acoustics, 2013, 32(S1): 183−184. (in Chinese).
|
[8] |
李瑶, 吴文焘, 李平. 超声虚源成像中自适应双向空间逐点聚焦方法[J]. 声学学报, 2016,41(3): 287−295.
LI Y, WU W T, LI P. Adaptive bi-directional point-wise focusing method in ultrasonic imaging based on virtual source[J]. Acta Acustica, 2016, 41(3): 287−295. (in Chinese).
|
[9] |
FRAZIER C H, O'BRIEN W D. Synthetic aperture techniques with a virtual source element[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1998, 45(1): 196−207.
|
[10] |
NGUYEN N Q, PRAGER R W. High-resolution ultrasound imaging with unified pixel-based beamforming[J]. IEEE Transactions on Biomedical Engineering, 2015, 35(1): 98−108.
|
[11] |
NGUYEN N Q, PRAGER R W. Ultrasound pixel-based beamforming with phase alignments of focused beams[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2017, 64(6): 937−946. doi: 10.1109/TUFFC.2017.2685198
|
[12] |
KIM C, YOON C, PARK J H, et al. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: Preliminary phantom and in vivo breast study[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2716−2724. doi: 10.1109/TBME.2013.2263310
|
[13] |
JENSEN J A, GORI P. Spatial filters for focusing ultrasound images[C]//2001 IEEE Ultrasonics Symposium Proceedings, 2001, 2: 1507-1511.
|
[14] |
聂昕, 郭志福, 何智成, 等. 基于盲反卷积和参数化模型的超声参数估计[J]. 仪器仪表学报, 2015,36(11): 2611−2616. doi: 10.3969/j.issn.0254-3087.2015.11.027
NIE X, GUO Z F, HE Z C, et al. Parameters estimation of ultrasonic echo signal based on blind deconvolution and parameterized model[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2611−2616. (in Chinese). doi: 10.3969/j.issn.0254-3087.2015.11.027
|
[15] |
孔垂硕, 罗林, 李金龙, 等. 基于盲反卷积的超声合成孔径图像复原[J]. 电子制作, 2018,(7): 92−94. doi: 10.3969/j.issn.1006-5059.2018.07.035
|
[16] |
KIM K S, LIU J, INSANA M F. Efficient array beam forming by spatial filtering for ultrasound B-mode imaging[J]. Journal of the Acoustical Society of America, 2006, 120(2): 852. doi: 10.1121/1.2214393
|
[17] |
XIE H W, GUO H, ZHOU G Q, et al. Improved ultrasound image quality with pixel-based beamforming using a Wiener-filter and a SNR-dependent coherence factor[J]. Ultrasonics, 2022, 119: 106594. doi: 10.1016/j.ultras.2021.106594
|
[18] |
MALLART R, FINK M. Adaptive focusing in scattering media through sound-speed inhomogeneities: The van cittert zernike approach and focusing criterion[J]. The Journal of the Acoustical Society of America, 1994, 96(6): 3721−3732. doi: 10.1121/1.410562
|
[19] |
LI P C, LI M L. Adaptive imaging using the generalized coherence factor[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2003, 50(2): 128−141. doi: 10.1109/TUFFC.2003.1182117
|
[20] |
CAMACHO J, PARRILLA M, FRITSCH C. Phase coherence imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2009, 56(5): 958−974. doi: 10.1109/TUFFC.2009.1128
|
[21] |
NILSEN C I C, HOLM S. Wiener beamforming and the coherence factor in ultrasound imaging[J]. Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on, 2010, 57(6): 1329−1346.
|
[22] |
JENSEN J A, SVENDSEN N B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1992, 39(2): 262−267. doi: 10.1109/58.139123
|
[23] |
COBBOLD R S C. Foundations of biomedical ultrasound[J]. Foundations of Biomedical Ultrasound, 2006.
|
[24] |
ALIABADI S, WANG Y, YU J. Adaptive scaled Wiener postfilter beamformer for ultrasound imaging[C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016: 1449-1452.
|
[25] |
郭建中, 林书玉. 超声检测中维纳逆滤波解卷积方法的改进研究[J]. 应用声学, 2005,24(2): 97−102. doi: 10.3969/j.issn.1000-310X.2005.02.007
GUO J Z, LIN S Y. A modified Wiener inverse filter for deconvolution in ultrasonic detection[J]. Applied Acoustics, 2005, 24(2): 97−102. (in Chinese). doi: 10.3969/j.issn.1000-310X.2005.02.007
|
[26] |
李静, 乔建民, 王俊奇, 等. 心外膜及心周脂肪体积与颈动脉粥样斑块的关系[J]. CT理论与应用研究, 2017,26(6): 761−768. DOI: 10.15953/j.1004-4140.2017.26.06.13.
LI J, QIAO J M, WANG J Q, et al. Correlation of epicardial adipose tissue and pericardial adipose tissue with carotid artery plaque[J]. CT Theory and Application, 2017, 26(6): 761−768. DOI: 10.15953/j.1004-4140.2017.26.06.13. (in Chinese).
|