ISSN 1004-4140
CN 11-3017/P
PU S L, XIE H W, GUO H, et al. Coherent beam-forming combined with wiener filter in ultrasound imaging[J]. CT Theory and Applications, 2022, 31(6): 793-808. DOI: 10.15953/j.ctta.2022.043. (in Chinese).
Citation: PU S L, XIE H W, GUO H, et al. Coherent beam-forming combined with wiener filter in ultrasound imaging[J]. CT Theory and Applications, 2022, 31(6): 793-808. DOI: 10.15953/j.ctta.2022.043. (in Chinese).

Coherent Beam-forming Combined with Wiener Filter in Ultrasound Imaging

More Information
  • Received Date: March 14, 2022
  • Revised Date: April 10, 2022
  • Accepted Date: April 20, 2022
  • Available Online: May 06, 2022
  • Published Date: November 02, 2022
  • The traditional ultrasonic dynamic focusing imaging which simply uses the delay-and-sum method in beamforming shows low resolution and poor contrast. In this study, based on the coherent pixel-based beamforming (Coherent PB), a novel Wiener pre-filter with high computational efficiency is applied to correct the phase of the entire array signal by using the pulse-echo at the focal point. We also apply a Wiener post-filter calculating adaptive weights for the beamforming results of each sub-aperture to suppress the noise and artifacts. The proposed method's effectiveness is verified through simulation experiments, phantom experiments, and in vivo experiments. Compared with Coherent PB, the proposed method significantly improves the axial resolution and contrast of images while maintaining the high lateral resolution and computational efficiency, which shows certain clinical application value.
  • [1]
    郑驰超, 彭虎. 基于编码发射与自适应波束形成的超声成像[J]. 电子与信息学报, 2010,32(4): 959−962.

    ZHENG C C, PENG H. Ultrasounic imaging based on coded exciting technology and adaptive beamforming[J]. Journal of Electronics & Information Technology, 2010, 32(4): 959−962. (in Chinese).
    [2]
    JENSEN J A, NIKOLOV S I, GAMMELMARK K L, et al. Synthetic aperture ultrasound imaging[J]. Ultrasonics, 2006, 44(8): e5−e15.
    [3]
    NOWICKI A, GAMBIN B. Ultrasonic synthetic apertures: Review[J]. Archives of Acoustics, 2014, 39(4): 427−438.
    [4]
    孙宝申, 沈建中. 合成孔径聚焦超声成像(一)[J]. 应用声学: 1993, 12(3): 43-48.
    [5]
    孙宝申, 张凡, 沈建中. 合成孔径聚焦声成像时域算法研究[J]. 声学学报, 1997,22(1): 42−49.

    SUN B S, ZHANG F, SHEN J Z. Synthetic aperture focusing in time-domain for acoustic imaging[J]. Acta Acustica, 1997, 22(1): 42−49. (in Chinese).
    [6]
    杜英华, 张聪颖, 陈世莉, 等. 合成孔径聚焦超声成像方法研究[J]. 海洋技术, 2010,29(2): 94−96. doi: 10.3969/j.issn.1003-2029.2010.02.023

    DU Y H, ZHANG C Y, CHEN S L, et al. Research of synthetic aperture focus technology in ultrasonic imaging[J]. Ocean Technology, 2010, 29(2): 94−96. (in Chinese). doi: 10.3969/j.issn.1003-2029.2010.02.023
    [7]
    李遥, 吴文焘, 李平. 虚拟源方法应用于B超成像系统的研究[J]. 声学技术, 2013,32(S1): 183−184.

    LI Y, WU W T, LI P. A study of B-mode ultrasound imaging with virtual source method[J]. Technical Acoustics, 2013, 32(S1): 183−184. (in Chinese).
    [8]
    李瑶, 吴文焘, 李平. 超声虚源成像中自适应双向空间逐点聚焦方法[J]. 声学学报, 2016,41(3): 287−295.

    LI Y, WU W T, LI P. Adaptive bi-directional point-wise focusing method in ultrasonic imaging based on virtual source[J]. Acta Acustica, 2016, 41(3): 287−295. (in Chinese).
    [9]
    FRAZIER C H, O'BRIEN W D. Synthetic aperture techniques with a virtual source element[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1998, 45(1): 196−207.
    [10]
    NGUYEN N Q, PRAGER R W. High-resolution ultrasound imaging with unified pixel-based beamforming[J]. IEEE Transactions on Biomedical Engineering, 2015, 35(1): 98−108.
    [11]
    NGUYEN N Q, PRAGER R W. Ultrasound pixel-based beamforming with phase alignments of focused beams[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2017, 64(6): 937−946. doi: 10.1109/TUFFC.2017.2685198
    [12]
    KIM C, YOON C, PARK J H, et al. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: Preliminary phantom and in vivo breast study[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2716−2724. doi: 10.1109/TBME.2013.2263310
    [13]
    JENSEN J A, GORI P. Spatial filters for focusing ultrasound images[C]//2001 IEEE Ultrasonics Symposium Proceedings, 2001, 2: 1507-1511.
    [14]
    聂昕, 郭志福, 何智成, 等. 基于盲反卷积和参数化模型的超声参数估计[J]. 仪器仪表学报, 2015,36(11): 2611−2616. doi: 10.3969/j.issn.0254-3087.2015.11.027

    NIE X, GUO Z F, HE Z C, et al. Parameters estimation of ultrasonic echo signal based on blind deconvolution and parameterized model[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2611−2616. (in Chinese). doi: 10.3969/j.issn.0254-3087.2015.11.027
    [15]
    孔垂硕, 罗林, 李金龙, 等. 基于盲反卷积的超声合成孔径图像复原[J]. 电子制作, 2018,(7): 92−94. doi: 10.3969/j.issn.1006-5059.2018.07.035
    [16]
    KIM K S, LIU J, INSANA M F. Efficient array beam forming by spatial filtering for ultrasound B-mode imaging[J]. Journal of the Acoustical Society of America, 2006, 120(2): 852. doi: 10.1121/1.2214393
    [17]
    XIE H W, GUO H, ZHOU G Q, et al. Improved ultrasound image quality with pixel-based beamforming using a Wiener-filter and a SNR-dependent coherence factor[J]. Ultrasonics, 2022, 119: 106594. doi: 10.1016/j.ultras.2021.106594
    [18]
    MALLART R, FINK M. Adaptive focusing in scattering media through sound-speed inhomogeneities: The van cittert zernike approach and focusing criterion[J]. The Journal of the Acoustical Society of America, 1994, 96(6): 3721−3732. doi: 10.1121/1.410562
    [19]
    LI P C, LI M L. Adaptive imaging using the generalized coherence factor[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2003, 50(2): 128−141. doi: 10.1109/TUFFC.2003.1182117
    [20]
    CAMACHO J, PARRILLA M, FRITSCH C. Phase coherence imaging[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2009, 56(5): 958−974. doi: 10.1109/TUFFC.2009.1128
    [21]
    NILSEN C I C, HOLM S. Wiener beamforming and the coherence factor in ultrasound imaging[J]. Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on, 2010, 57(6): 1329−1346.
    [22]
    JENSEN J A, SVENDSEN N B. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1992, 39(2): 262−267. doi: 10.1109/58.139123
    [23]
    COBBOLD R S C. Foundations of biomedical ultrasound[J]. Foundations of Biomedical Ultrasound, 2006.
    [24]
    ALIABADI S, WANG Y, YU J. Adaptive scaled Wiener postfilter beamformer for ultrasound imaging[C]//2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016: 1449-1452.
    [25]
    郭建中, 林书玉. 超声检测中维纳逆滤波解卷积方法的改进研究[J]. 应用声学, 2005,24(2): 97−102. doi: 10.3969/j.issn.1000-310X.2005.02.007

    GUO J Z, LIN S Y. A modified Wiener inverse filter for deconvolution in ultrasonic detection[J]. Applied Acoustics, 2005, 24(2): 97−102. (in Chinese). doi: 10.3969/j.issn.1000-310X.2005.02.007
    [26]
    李静, 乔建民, 王俊奇, 等. 心外膜及心周脂肪体积与颈动脉粥样斑块的关系[J]. CT理论与应用研究, 2017,26(6): 761−768. DOI: 10.15953/j.1004-4140.2017.26.06.13.

    LI J, QIAO J M, WANG J Q, et al. Correlation of epicardial adipose tissue and pericardial adipose tissue with carotid artery plaque[J]. CT Theory and Application, 2017, 26(6): 761−768. DOI: 10.15953/j.1004-4140.2017.26.06.13. (in Chinese).

Catalog

    Article views (507) PDF downloads (216) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return