Citation: | WEI Y L, YANG Z Y, XIA W J, et al. Low-dose CT denoising based on subspace projection and edge enhancement[J]. CT Theory and Applications, 2022, 31(6): 721-729. DOI: 10.15953/j.ctta.2022.108. (in Chinese). |
[1] |
PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12): 123009. doi: 10.1088/0266-5611/25/12/123009
|
[2] |
WANG J, LI T, LU H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272−1283. doi: 10.1109/TMI.2006.882141
|
[3] |
MANDUCA A, YU L, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT[J]. Medical Physics, 2009, 36(11): 4911−4919. doi: 10.1118/1.3232004
|
[4] |
XU Q, YU H, MOU X, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682−1697. doi: 10.1109/TMI.2012.2195669
|
[5] |
ZHENG X, RAVISHANKAR S, LONG Y, et al. PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1498−1510. doi: 10.1109/TMI.2018.2832007
|
[6] |
FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010, 55(18): 5401.
|
[7] |
MA J, HUANG J, FENG Q, et al. Low-dose computed tomography image restoration using previous normal-dose scan[J]. Medical Physics, 2011, 38(10): 5713−5731. doi: 10.1118/1.3638125
|
[8] |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524−2535. doi: 10.1109/TMI.2017.2715284
|
[9] |
SHAN H, ZHANG Y, YANG Q, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522−1534. doi: 10.1109/TMI.2018.2832217
|
[10] |
YOU C, LI G, ZHANG Y, et al. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE)[J]. IEEE Transactions on Medical Imaging, 2019, 39(1): 188−203.
|
[11] |
GHOLIZADEH-ANSARI M, ALIREZAIE J, BABYN P. Deep learning for low-dose CT denoising using perceptual loss and edge detection layer[J]. Journal of Digital Imaging, 2020, 33(2): 504−515. doi: 10.1007/s10278-019-00274-4
|
[12] |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142−3155. doi: 10.1109/TIP.2017.2662206
|
[13] |
AWAR S, BARNES N. Real image denoising with feature attention[C]//IEEE/CVF International Conference on Computer Vision. 2019: 3155-3164.
|
[14] |
GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1712-1722.
|
[15] |
ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//European Conference on Computer Vision. Springer, Cham, 2020: 492-511.
|
[16] |
CHENG S, WANG Y Z, HUANG H B, et al. NBNet: Noise basis learning for image denoising with subspace projection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4896-4906.
|
[17] |
HUANG Z, ZHANG J, ZHANG Y, et al. DU-GAN: Generative adversarial networks with dual-domain U-Net based discriminators for low-dose CT denoising[J]. arXiv Preprint. arXiv: 2108.10772, 2021.
|
[18] |
SHAN H, PADOLE A, HOMAYOUNIEH F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction[J]. Nature Machine Intelligence, 2019, 1(6): 269−276. doi: 10.1038/s42256-019-0057-9
|
[19] |
LUTHRA A, SULAKHE H, MITTAL T, et al. Eformer: Edge enhancement based transformer for medical image denoising[J]. arXiv Preprint. arXiv: 2109.08044, 2021.
|
[20] |
KANOPOULOS N, VASANTHAVADA N, BAKER R L. Design of an image edge detection filter using the Sobel operator[J]. IEEE Journal of Solid-state Circuits, 1988, 23(2): 358−367. doi: 10.1109/4.996
|
[21] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
[22] |
XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv Preprint. arXiv: 1505.00853, 2015.
|
[23] |
LIU J, HU Y, YANG J, et al. 3D feature constrained reconstruction for low-dose CT imaging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(5): 1232−1247.
|
[24] |
LIU J, MA J, ZHANG Y, et al. Discriminative feature representation to improve projection data inconsistency for low dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2499−2509. doi: 10.1109/TMI.2017.2739841
|
[25] |
CHEN Y, SHI L, FENG Q, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271−2292. doi: 10.1109/TMI.2014.2336860
|
[26] |
YIN X, ZHAO Q, LIU J, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2903−2913. doi: 10.1109/TMI.2019.2917258
|
[27] |
LYU T, ZHAO W, ZHU Y, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network[J]. Medical Image Analysis, 2021, 70: 102001. doi: 10.1016/j.media.2021.102001
|
[28] |
JIN H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509−4522. doi: 10.1109/TIP.2017.2713099
|
[29] |
MCCOLLOUGH C, BARTLEY A C, CARTER R E, et al. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 low dose CT grand challenge[J]. Medical Physics, 2017, 44(10): e339−e352. doi: 10.1002/mp.12345
|
[30] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv Preprint. arXiv: 1412.6980, 2014.
|