ISSN 1004-4140
CN 11-3017/P
WEI Y L, YANG Z Y, XIA W J, et al. Low-dose CT denoising based on subspace projection and edge enhancement[J]. CT Theory and Applications, 2022, 31(6): 721-729. DOI: 10.15953/j.ctta.2022.108. (in Chinese).
Citation: WEI Y L, YANG Z Y, XIA W J, et al. Low-dose CT denoising based on subspace projection and edge enhancement[J]. CT Theory and Applications, 2022, 31(6): 721-729. DOI: 10.15953/j.ctta.2022.108. (in Chinese).

Low-dose CT Denoising Based on Subspace Projection and Edge Enhancement

More Information
  • Received Date: June 04, 2022
  • Accepted Date: July 12, 2022
  • Available Online: July 19, 2022
  • Published Date: November 02, 2022
  • Low-dose computed tomography (CT) is a relatively safe method for disease screening. But low-dose CT images often contain severe noise and artifacts, which seriously affect the subsequent diagnosis. To solve this problem, this paper proposes a subspace projection and edge enhancement network (SPEENet). SPEENet hold an architecture of autoencoder, including two main modules: dual stream encoder and decoder. The dual stream encoder can be divided into two parts: noise image coding stream and edge information coding stream. The noise image coding stream removes the noise and artifacts in low-dose CT images by using the image features extracted from the low-dose CT images. The edge information coding stream mainly focuses on the edge information of low-dose CT images and fully utilize the edge information to preserve the structures. In order to make full use of the encoder features, this paper introduces the noise basis projection module to establish a basis based on the features of encoder and decoder, and uses this basis to project the features extracted by the encoder into the corresponding subspace to obtain better feature representation. In this paper, experiments are conducted on the public database to verify the effectiveness. The experimental results show that SPEENet can achieve better denoising performance than other low-dose CT denoising networks.
  • [1]
    PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12): 123009. doi: 10.1088/0266-5611/25/12/123009
    [2]
    WANG J, LI T, LU H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272−1283. doi: 10.1109/TMI.2006.882141
    [3]
    MANDUCA A, YU L, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT[J]. Medical Physics, 2009, 36(11): 4911−4919. doi: 10.1118/1.3232004
    [4]
    XU Q, YU H, MOU X, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682−1697. doi: 10.1109/TMI.2012.2195669
    [5]
    ZHENG X, RAVISHANKAR S, LONG Y, et al. PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1498−1510. doi: 10.1109/TMI.2018.2832007
    [6]
    FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010, 55(18): 5401.
    [7]
    MA J, HUANG J, FENG Q, et al. Low-dose computed tomography image restoration using previous normal-dose scan[J]. Medical Physics, 2011, 38(10): 5713−5731. doi: 10.1118/1.3638125
    [8]
    CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524−2535. doi: 10.1109/TMI.2017.2715284
    [9]
    SHAN H, ZHANG Y, YANG Q, et al. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1522−1534. doi: 10.1109/TMI.2018.2832217
    [10]
    YOU C, LI G, ZHANG Y, et al. CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE)[J]. IEEE Transactions on Medical Imaging, 2019, 39(1): 188−203.
    [11]
    GHOLIZADEH-ANSARI M, ALIREZAIE J, BABYN P. Deep learning for low-dose CT denoising using perceptual loss and edge detection layer[J]. Journal of Digital Imaging, 2020, 33(2): 504−515. doi: 10.1007/s10278-019-00274-4
    [12]
    ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142−3155. doi: 10.1109/TIP.2017.2662206
    [13]
    AWAR S, BARNES N. Real image denoising with feature attention[C]//IEEE/CVF International Conference on Computer Vision. 2019: 3155-3164.
    [14]
    GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1712-1722.
    [15]
    ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//European Conference on Computer Vision. Springer, Cham, 2020: 492-511.
    [16]
    CHENG S, WANG Y Z, HUANG H B, et al. NBNet: Noise basis learning for image denoising with subspace projection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4896-4906.
    [17]
    HUANG Z, ZHANG J, ZHANG Y, et al. DU-GAN: Generative adversarial networks with dual-domain U-Net based discriminators for low-dose CT denoising[J]. arXiv Preprint. arXiv: 2108.10772, 2021.
    [18]
    SHAN H, PADOLE A, HOMAYOUNIEH F, et al. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction[J]. Nature Machine Intelligence, 2019, 1(6): 269−276. doi: 10.1038/s42256-019-0057-9
    [19]
    LUTHRA A, SULAKHE H, MITTAL T, et al. Eformer: Edge enhancement based transformer for medical image denoising[J]. arXiv Preprint. arXiv: 2109.08044, 2021.
    [20]
    KANOPOULOS N, VASANTHAVADA N, BAKER R L. Design of an image edge detection filter using the Sobel operator[J]. IEEE Journal of Solid-state Circuits, 1988, 23(2): 358−367. doi: 10.1109/4.996
    [21]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [22]
    XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv Preprint. arXiv: 1505.00853, 2015.
    [23]
    LIU J, HU Y, YANG J, et al. 3D feature constrained reconstruction for low-dose CT imaging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(5): 1232−1247.
    [24]
    LIU J, MA J, ZHANG Y, et al. Discriminative feature representation to improve projection data inconsistency for low dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2499−2509. doi: 10.1109/TMI.2017.2739841
    [25]
    CHEN Y, SHI L, FENG Q, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271−2292. doi: 10.1109/TMI.2014.2336860
    [26]
    YIN X, ZHAO Q, LIU J, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2903−2913. doi: 10.1109/TMI.2019.2917258
    [27]
    LYU T, ZHAO W, ZHU Y, et al. Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network[J]. Medical Image Analysis, 2021, 70: 102001. doi: 10.1016/j.media.2021.102001
    [28]
    JIN H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509−4522. doi: 10.1109/TIP.2017.2713099
    [29]
    MCCOLLOUGH C, BARTLEY A C, CARTER R E, et al. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 low dose CT grand challenge[J]. Medical Physics, 2017, 44(10): e339−e352. doi: 10.1002/mp.12345
    [30]
    KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv Preprint. arXiv: 1412.6980, 2014.

Catalog

    Article views (848) PDF downloads (255) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return