• Key Magazine of China Technology(CSTPCD)
ISSN 1004-4140
CN 11-3017/P
LI J J, ZHANG L, LIU M W, et al. In vivo study of the influence of CT acquisition and reconstruction parameters on chest CT number[J]. CT Theory and Applications, 2023, 32(4): 480-486. DOI: 10.15953/j.ctta.2022.109. (in Chinese).
Citation: LI J J, ZHANG L, LIU M W, et al. In vivo study of the influence of CT acquisition and reconstruction parameters on chest CT number[J]. CT Theory and Applications, 2023, 32(4): 480-486. DOI: 10.15953/j.ctta.2022.109. (in Chinese).

In Vivo Study of the Influence of CT Acquisition and Reconstruction Parameters on Chest CT Number

More Information
  • Received Date: September 04, 2022
  • Available Online: September 29, 2022
  • Published Date: July 30, 2023
  • Objective: To explore the influence of different CT acquisition and reconstruction parameters on the CT number of the chest in vivo. Methods: The CT number of the trachea, blood vessels, lungs, vertebral bodies, and muscles of the human chest were measured under different CT scanning parameters. Six groups of different scanning parameters and reconstruction algorithms were set respectively: slice thickness 5 mm, 50% multi-model adaptive statistical iterative reconstruction Veo (ASIR-V) and low-dose for S1; slice thickness 5 mm, filtered back projection (FBP) and standard-dose for S2; slice thickness 1.25 mm, 50% ASIR-V and low-dose for S3; slice thickness 1.25 mm, 50% ASIR-V and standard-dose for S4; slice thickness 1.25 mm, FBP, low-dose for S5; slice thickness 1.25 mm, FBP, standard-dose for S6. The radiation dose of the scan was controlled using two noise indexes (NI), including low-dose (NI=40) and standard-dose (NI=10). Differences in CT number between two groups were compared using t-test or rank-sum test. Results: Significant differences of CT number of the trachea were detected between low-dose and standard-dose, but no significant differences of CT number of other tissues were detected between low-dose and standard-dose. No significant differences of CT number of chest tissues were detected between either 5 mm thickness and 1.25 mm thickness or 50% ASIR-V and FBP. Conclusion: The CT number of human chest tissues showed well stability which was scarcely influenced by slices thickness, reconstruction algorithm and scan dose.
  • [1]
    National Lung Screening Trial Research Team, ABERLE D R, ADAMS A M, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. The New England Journal of Medicine, 2011, 365(5): 395−409. doi: 10.1056/NEJMoa1102873
    [2]
    HANSELL D M, BANKIER A A, MacMAHON H, et al. Fleischner society: Glossary of terms for thoracic imaging[J]. Radiology, 2008, 246(3): 697−722. doi: 10.1148/radiol.2462070712
    [3]
    GODOY M C, NAIDICH D P. Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: Recommended interim guidelines for assessment and management[J]. Radiology, 2009, 253(3): 606−622. doi: 10.1148/radiol.2533090179
    [4]
    李琼, 于红, 张丽, 等. 迭代重建技术对低管电压胸部CT增强扫描图像质量的影响[J]. 实用放射学杂志, 2012,28(10): 1615−1618. doi: 10.3969/j.issn.1002-1671.2012.10.033

    LI Q, YU H, ZHANG L, et al. The effect of iterative reconstruction on image quality of contrast-enhanced chest CT with low tube voltage settings[J]. Journal of Practical, 2012, 28(10): 1615−1618. (in Chinese). doi: 10.3969/j.issn.1002-1671.2012.10.033
    [5]
    彭文献, 彭天舟, 夏顺仁, 等. X线管电压对生物组织CT值影响的实验研究[J]. 放射学实践, 2013,28(11): 1102−1104.

    PENG W X, PENG T Z, XIA S R, et a1. The effects of X-ray tube voltage on tissue CT value[J]. Radiologic Practice, 2013, 28(11): 1102−1104. (in Chinese).
    [6]
    彭文献, 彭天舟, 叶小琴, 等. CT扫描参数对人体组织CT值影响的研究[J]. 中华放射医学与防护杂志, 2010,30(1): 79−81. doi: 10.3760/cma.j.issn.0254-5098.2010.01.026

    PENG W X, PENG T Z, YE X Q, et al. Effect of CT scanning parameters on CT number[J]. Chinese Journal of Radiological Medicine and Protection, 2010, 30(1): 79−81. (in Chinese). doi: 10.3760/cma.j.issn.0254-5098.2010.01.026
    [7]
    赵雷, 刘波. 重建算法及射束硬化伪影对CT值测量的影响[J]. 影像研究与医学应用, 2019,3(14): 88−90.
    [8]
    韩萍, 于春水, 余永强, 等. 医学影像诊断学[M]. 4版. 北京: 人民卫生出版社, 2017: 4-5.
    [9]
    朱明, 刘贵霞, 李敬玉. CT扫描参数对CT值影响因素的实验研究[J]. 中国中西医结合影像学杂志, 2017,15(4): 91−93. doi: 10.3969/j.issn.1672-0512.2017.04.029
    [10]
    AOKAGE K, MIYOSHI T, ISHII G, et al. Clinical and pathological staging validation in the eighth edition of the TNM classification for lung cancer: Correlation between solid size on thin-section computed tomography and invasive size in pathological findings in the new T classification[J]. Journal of Thoracic Oncology, 2017, 12(9): 1403−1412. doi: 10.1016/j.jtho.2017.06.003
    [11]
    HENSCHKE C I, YIP R, SMITH J P, et al. CT screening for lung cancer: Part-solid nodules in baseline and annual repeat rounds[J]. American Journal of Roentgenology, 2016, 207(6): 1176−1184. doi: 10.2214/AJR.16.16043
    [12]
    YANKELEVITZ D F, YIP R, SMITH J P, et al. CT screening for lung cancer: Nonsolid nodules in baseline and annual repeat rounds[J]. Radiology, 2015, 277(2): 555−64. doi: 10.1148/radiol.2015142554
    [13]
    张丽, 吴宁, 李蒙, 等. Ⅰ期浸润性肺腺癌磨玻璃成分定量分析与附壁样生长的相关性研究[J]. 中华肿瘤杂志, 2017,39(4): 269−273. doi: 10.3760/cma.j.issn.0253-3766.2017.04.006

    ZHANG L, WU N, LI M, et al. The correlation study of ground glass opacity and lepidic growth pattern component in stage I lung invasive adenocarcinoma[J]. Chinese Journal of Oncology, 2017, 39(4): 269−273. (in Chinese). doi: 10.3760/cma.j.issn.0253-3766.2017.04.006
    [14]
    GAO C, LI J, WU L, et al. The natural growth of subsolid nodules predicted by quantitative initial CT features: A systematic review[J]. Frontiers in Oncology, 2020: 10318.
    [15]
    蒋宇, 贾晓民, 赵杰. 肺亚实性结节CT定量分析对肺腺癌病理侵袭性诊断价值[J]. 放射学实践, 2021,36(10): 1232−1237. doi: 10.13609/j.cnki.1000-0313.2021.10.007

    JIANG Y, JIA X M, ZHAO J. Diagnostic value of quantitative CT analysis of pulmonary subsolid nodules to lung adenocarcinoma[J]. Radiologic Practice, 2021, 36(10): 1232−1237. (in Chinese). doi: 10.13609/j.cnki.1000-0313.2021.10.007
  • Related Articles

    [1]LI Yongjun, ZHAO Junlu, ZHANG Jiakai, REN Qingyun, LIU Zhai. L1 Vertebral CT Attenuation Value in Abdominal CT Scanning for the Opportunistic Screening of Osteoporosis[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.134
    [2]MA Wentao, ZHANG Yongxian, GUO Senlin, LIU Yunfu, KANG Tianliang. Deep-learning-based Reconstruction Algorithm Increases Reconstruction Quality of Ultralow Tube Voltage and Low-dose Chest CT Images[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.278
    [3]GUAN Xingyu, LI Wangjia, LV Fajin, ZHANG Zhiwei. CT Image Quality Optimization and Radiation Dose Control Using Deep Learning Reconstruction Algorithms in Multi-Dose Abdominal CT: A Phantom Study[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.226
    [4]LAI Shouyong, WANG Di, YANG Chao, YANG Zi. Application of Trigger Threshold on Chest Enhanced CT Scan in Differential Diagnosis of Lung Cancer[J]. CT Theory and Applications, 2020, 29(3): 337-346. DOI: 10.15953/j.1004-4140.2020.29.03.10
    [5]XIA Zhenying, SUN Jun, WANG Xing, WU Dan, DING Jinli, LI Hongjun. Application of iDose4 Iterative Reconstruction on Low Dose CT Scanning in AIDS Patients with PJP[J]. CT Theory and Applications, 2020, 29(2): 195-202. DOI: 10.15953/j.1004-4140.2020.29.02.10
    [6]PAN Ru-jiang, HE Xiang, XIAO Wei-min, FU Ping. Application of CT Scanning Technique in Core 3D Reconstruction[J]. CT Theory and Applications, 2018, 27(3): 349-356. DOI: 10.15953/j.1004-4140.2018.27.03.07
    [7]XIONG Shan, XU Lei, CHENG Jian-min, CHEN Bo, ZHENG Li, DAI Ting-ting, LIU Si-bin, HUANG Yuan-yi. Application of Iterative Reconstruction in Low-dose Chest CT Scans of Preschool Children[J]. CT Theory and Applications, 2017, 26(6): 729-736. DOI: 10.15953/j.1004-4140.2017.26.06.09
    [8]CHEN Yun-bin, WANG Yuan, LIU Qing-hua. A CT Number Conversion Method of Cone Beam CT[J]. CT Theory and Applications, 2015, 24(4): 553-561. DOI: 10.15953/j.1004-4140.2015.24.04.09
    [9]JIANG Sheng-jie. Bayesian Reconstruction Algorithm for Low-dose CT Based on New Nonlocal Prior Model[J]. CT Theory and Applications, 2014, 23(3): 395-402.
    [10]CHEN Shi-jie, ZHAO Shu-ping, XING Li-li, ZHENG Jian-feng, DU Yu-xia. Affect of CT Scanning Parameters to the Quality of Rock and Soil Tomograms[J]. CT Theory and Applications, 2013, 22(2): 245-254.
  • Cited by

    Periodical cited type(2)

    1. 李梦雨,段诗苗,张雷,周咏春. 提高肺SBRT精度的多窗位动态组合诊疗手段. 中国CT和MRI杂志. 2024(04): 63-65 .
    2. 李玉辉,刘龙进,徐乐意,刘远高. 胸部CT不同图像算法对人工智能辅助诊断软件肺结节检出效果的影响研究. 中国医学装备. 2023(12): 10-14 .

    Other cited types(3)

Catalog

    YU Weijun

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (741) PDF downloads (374) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return