ISSN 1004-4140
CN 11-3017/P
SUN L, BAI J, DI W Q, et al. Research on blood flow separation algorithm of diffuse light correlation spectrum based on ICA[J]. CT Theory and Applications, 2022, 31(6): 809-820. DOI: 10.15953/j.ctta.2022.132. (in Chinese).
Citation: SUN L, BAI J, DI W Q, et al. Research on blood flow separation algorithm of diffuse light correlation spectrum based on ICA[J]. CT Theory and Applications, 2022, 31(6): 809-820. DOI: 10.15953/j.ctta.2022.132. (in Chinese).

Research on Blood Flow Separation Algorithm of Diffuse Light Correlation Spectrum Based on ICA

More Information
  • Received Date: July 04, 2022
  • Revised Date: August 06, 2022
  • Accepted Date: August 06, 2022
  • Available Online: August 21, 2022
  • Published Date: November 02, 2022
  • Blood flow is an important physiological parameter of the human body. Real-time measurement of blood flow in the brain, skeletal muscle, and breast tissue is of great significance for disease diagnosis, treatment, surgery, and intensive care. Near-Infrared Diffuse Correlation Spectroscopy (DCS) is a new-type tissue blood flow measurement technology. When using DCS technology for blood flow measurement, the light source-detector (S-D) at each distance contains different degrees of mixed signals of superficial and deep tissues, among which the superficial signals show greater impact on the extraction of blood flow in deep tissues. This paper combines the Nth order linear algorithm (NL algorithm) with the independent component analysis algorithm (Independent Component Analysis, ICA) to separate and process the short-range and long-range optical signals obtained by DCS technology. The computer simulation shows that the algorithm proposed in this paper can better separate the blood flow signals of the superficial and deep tissues, and demonstrates important potential for the application of DCS technology in clinical blood flow measurement in the future.
  • [1]
    张玲. 缺血性卒中急性期中医治疗研究进展[J]. 中国实用医药, 2014,(2): 247−249. doi: 10.14163/j.cnki.11-5547/r.2014.02.203

    ZHANG L. Research progress of traditional Chinese medicine treatment in acute ischemic stroke[J]. China Practical Medicine, 2014, (2): 247−249. (in Chinese). doi: 10.14163/j.cnki.11-5547/r.2014.02.203
    [2]
    刘菊华, 吕江华, 苏小钢, 等. 脑血流监测对缺血性脑卒中血管内治疗术后预后的临床研究[J]. 首都食品与医药, 2021,28(12): 49−50. DOI: 10.3969/j.issn.1005-8257.2021.12.025.

    LIU J H, LV J H, SU X G, et al. Clinical study of cerebral blood flow monitoring on postoperative prognosis of ischemic stroke after endovascular treatment[J]. Capital Food and Medicine, 2021, 28(12): 49−50. DOI: 10.3969/j.issn.1005-8257.2021.12.025. (in Chinese).
    [3]
    汪涛, 苏浩波, 顾建平. 评估下肢骨骼肌血流灌注的方法及研究进展[J]. 山西医药杂志, 2019,48(8): 904−907. DOI: 10.3969/j.issn.0253-9926.2019.08.008.

    WANG T, SU H B, GU J P. Methods and research progress of assessing blood perfusion of lower extremity skeletal muscle[J]. Shanxi Medical Journal, 2019, 48(8): 904−907. DOI: 10.3969/j.issn.0253-9926.2019.08.008. (in Chinese).
    [4]
    杨扬, 李功杰. 乳腺肿瘤CT灌注成像及其临床应用研究进展[J]. 军事医学科学院院刊, 2007,31(3): 290−293. DOI: 10.3969/j.issn.1674-9960.2007.03.026.

    YANG Y, LI G J. Research progress of breast tumor CT perfusion imaging and its clinical application[J]. Journal of the Academy of Military Medical Sciences, 2007, 31(3): 290−293. DOI: 10.3969/j.issn.1674-9960.2007.03.026. (in Chinese).
    [5]
    尚禹, 刘祎, 王冠军, 等. 结合生物体形态学信息实现功能血流成像的近红外漫射光新技术[J]. 中国医学物理学杂志, 2016,33(12): 1212−1216. DOI: 10.3969/j.issn.1005-202X.2016.12.006.

    SHANG Y, LIU Y, WANG G J, et al. Near-infrared diffuse optical technology for functional blood flow imaging through integrating the morphological information of biological tissues[J]. Chinese Journal of Medical Physics, 2016, 33(12): 1212−1216. DOI: 10.3969/j.issn.1005-202X.2016.12.006. (in Chinese).
    [6]
    DURDURAN T, YODH A G. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement[J]. Neuroimage, 2014, 85: 51−63. doi: 10.1016/j.neuroimage.2013.06.017
    [7]
    SHANG Y, GURLEY K, YU G. Diffuse correlation spectroscopy (DCS) for assessment of tissue blood flow in skeletal muscle: Recent progress[J]. Anatomy & Physiology: Current Research, 2013, 3(2): 128. DOI: 10.4172/2161-0940.1000128.
    [8]
    SHANG Y, LI T, YU G Q. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging[J]. Physiological Measurement, 2017, 38(4): R1−R26. doi: 10.1088/1361-6579/aa60b7
    [9]
    乐恺, 罗运晖, 张欣欣. 考虑脑脊液层的局部脑冷却传热分析[J]. 应用基础与工程科学学报, 2010,18(3): 484−492. DOI: 10.3969/j.issn.1005-0930.2010.03013.

    LE K, LUO Y H, ZHANG X X. Heat transfer analysis of local brain cooling considering cerebrospinal fluid layer[J]. Chinese Journal of Applied Basic and Engineering Sciences, 2010, 18(3): 484−492. DOI: 10.3969/j.issn.1005-0930.2010.03013. (in Chinese).
    [10]
    李俊来, 赵晓慧. 正常乳腺组织结构与超声表现[J]. 中华医学超声杂志(电子版), 2017,14(8): 561−566. DOI: 10.3877/cma.j.issn.1672-6448.2017.08.001.

    LI J L, ZHAO X H. Normal breast tissue structure and ultrasound appearance[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(8): 561−566. DOI: 10.3877/cma.j.issn.1672-6448.2017.08.001. (in Chinese).
    [11]
    LI J, DIETSCHE G, IFTIME D, et al. Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy[J]. Journal of Biomedical Optics, 2005, 10(4): 044002. doi: 10.1117/1.2007987
    [12]
    JAILLON F, SKIPETROV S E, LI J, et al. Diffusing-wave spectroscopy from head-like tissue phantoms: Influence of a non-scattering layer[J]. Optics Express, 2006, 14(22): 10181−10194. doi: 10.1364/OE.14.010181
    [13]
    BAKER W B, PARTHASARATHY A B, BUSCH D R, et al. Modified Beer-Lambert law for blood flow[J]. Biomedical Optics Express, 2014, 5(11): 4053−4075. doi: 10.1364/BOE.5.004053
    [14]
    BAKER W B, PARTHASARATHY A B, KO T S, et al. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts[J]. Neurophotonics, 2015, 2(3): 035004. doi: 10.1117/1.NPh.2.3.035004
    [15]
    SUTIN J, ZIMMERMAN B, TYULMANKOV D, et al. Time-domain diffuse correlation spectroscopy[J]. Optica, 2016, 3(9): 1006−1013. doi: 10.1364/OPTICA.3.001006
    [16]
    PAGLIAZZI M, SEKAR S K V, COLOMBO L, et al. Time domain diffuse correlation spectroscopy with a high coherence pulsed source: In vivo and phantom results[J]. Biomedical Optics Express, 2017, 8(11): 5311−5325. doi: 10.1364/BOE.8.005311
    [17]
    HYVARINEN A, OJA E. Independent component analysis: Algorithms and applications[J]. Neural Networks, 2000, 13(4/5): 411−430. doi: 10.1016/S0893-6080(00)00026-5
    [18]
    梁佳明, 王晶, 梅建生, 等. 基于扩散相关光谱的血流检测方法研究[J]. 光谱学与光谱分析, 2012,32(10): 2749−2752. DOI: 10.3964/j.issn.1000-0593(2012)10-2749-04.

    LIANG J M, WANG J, MEI J S, et al. Research on blood flow detection method based on diffusion correlation spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(10): 2749−2752. DOI: 10.3964/j.issn.1000-0593(2012)10-2749-04. (in Chinese).
    [19]
    刘彩彩, 凌浩, 冯士杰, 等. 诱发生理状态下的脑血流动力学的无创光学评估[J]. 中国医疗设备, 2020,35(2): 36−39. DOI: 10.3969/j.issn.1674-1633.2020.02.009.

    LIU C C, LING H, FENG S J, et al. Noninvasive optical evaluation of cerebral hemodynamics under induced-physiological status[J]. China Medical Equipment, 2020, 35(2): 36−39. DOI: 10.3969/j.issn.1674-1633.2020.02.009. (in Chinese).
    [20]
    冯士杰, 桂志国, 张晓娟, 等. 基于3D打印技术的血流成像光纤探头设计[J]. 中国医疗设备, 2022,37(2): 24−28. DOI: 10.3969/j.issn.1674-1633.2022.02.006.

    FENG S J, GUI Z G, ZHANG X J, et al. Design of optical fiber probe for blood flow imaging based on 3D printing technology[J]. China Medical Equipment, 2022, 37(2): 24−28. DOI: 10.3969/j.issn.1674-1633.2022.02.006. (in Chinese).
    [21]
    SHANG Y, YU G. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues[J]. Applied Physics Letters, 2014, 105(13): 133702. doi: 10.1063/1.4896992
    [22]
    SHANG Y, LI T, CHEN L, et al. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation[J]. Applied Physics Letters, 2014, 104(19): 193703. doi: 10.1063/1.4876216
    [23]
    HYVARINEN A, Karhunen J, Oja E. 独立成分分析[M]. 周宗潭, 董国华, 徐昕, 等, 译. 北京: 电子工业出版社. 2007.
    [24]
    吴小培. 独立分量分析及其在脑电信号处理中的应用[D]. 合肥: 中国科学技术大学, 2002: 73-102. DOI: 10.7666/d.y480061.

    WU X P. Independent component analysis and its application in EEG signal processing[D]. Hefei: University of Science and Technology of China, 2002: 73-102. DOI:10.7666/d.y480061. (in Chinese).
    [25]
    杨竹青, 李勇, 胡德文. 独立成分分析方法综述[J]. 自动化学报, 2002,28(5): 762−772. doi: 10.16383/j.aas.2002.05.012

    YANG Z Q, LI Y, HU D W. Review of independent component analysis methods[J]. Chinese Journal of Automation, 2002, 28(5): 762−772. (in Chinese). doi: 10.16383/j.aas.2002.05.012
    [26]
    杨金成, 张南. 独立成分分析技术综述[J]. 舰船科学技术, 2007,29(2): 83−86.

    YANG J C, ZHANG N. Review of independent component analysis technology[J]. Ship Science and Technology, 2007, 29(2): 83−86. (in Chinese).
    [27]
    李云霞. 盲信号分离算法及其应用[D]. 成都: 电子科技大学, 2008: 13-31. DOI: 10.7666/d.Y1450260.

    LI Y X. Blind signal separation algorithm and its application[D]. Chengdu: University of Electronic Science and Technology of China, 2008: 13-31. DOI:10.7666/d.Y1450260. (in Chinese).
    [28]
    HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7): 1483−1492. doi: 10.1162/neco.1997.9.7.1483
    [29]
    田甲略, 朱玉莲, 陈飞玥, 等. 基于局部特征的二维白化重构[J]. 数据采集与处理, 2022,37(2): 308−320. DOI: 10.16337/j.1004-9037.2022.02.005.

    TIAN J L, ZHU Y L, CHEN F Y, et al. Local-feature-based two-dimensional whitening reconstruction[J]. Journal of Data Acquisition and Processing, 2022, 37(2): 308−320. DOI: 10.16337/j.1004-9037.2022.02.005. (in Chinese).
    [30]
    江涌, 章林柯, 何琳, 等. 两次去相关用于振动信号盲分离[J]. 振动、测试与诊断, 2011,31(2): 241−245. DOI: 10.3969/j.issn.1004-6801.2011.02.022.

    JIANG Y, ZHANG L K, HE L, et al. Double decorrelation for blind separation of vibration signals[J]. Vibration, Testing and Diagnosis, 2011, 31(2): 241−245. DOI: 10.3969/j.issn.1004-6801.2011.02.022. (in Chinese).
    [31]
    LI T, GONG H, LUO Q. Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy[J]. Journal of Biomedical Optics, 2011, 16(4): 045001. doi: 10.1117/1.3567085
    [32]
    LI T, XUE C, WANG P, et al. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1743002. doi: 10.1142/S1793545817430027
    [33]
    LI T, LIN Y, SHANG Y, et al. Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter[J]. Scientific Reports, 2013, 3(1): 1−10.
    [34]
    MENG L, WANG Y, ZHANG L, et al. Heterogeneity and variability in pressure autoregulation of organ blood flow: Lessons learned over 100+ years[J]. Critical Care Medicine, 2019, 47(3): 436−448. doi: 10.1097/CCM.0000000000003569
    [35]
    CHENG R, SHANG Y, HAYES J D, et al. Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics[J]. Neuroimage, 2012, 62(3): 1445−1454. doi: 10.1016/j.neuroimage.2012.05.069
    [36]
    DIEHL R R, LINDEN D, LUCKE D, et al. Phase relationship between cerebral blood flow velocity and blood pressure: A clinical test of autoregulation[J]. Stroke, 1995, 26(10): 1801−1804. doi: 10.1161/01.STR.26.10.1801

Catalog

    Article views (510) PDF downloads (205) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return