Citation: | DOU P P, ZHAO H L, CAO A H. Spectral CT Combined with Tumor Markers to Predict Ki-67 Expression in Lung Adenocarcinoma[J]. CT Theory and Applications, 2023, 32(6): 753-760. DOI: 10.15953/j.ctta.2022.172. (in Chinese). |
Purpose: To investigate the predictive value of energy spectrum CT quantitative parameters combined with serum tumor markers (CEA, CA-125) on Ki-67 expression in lung adenocarcinoma. Methods: The clinicopathological and imaging data of 64 patients with lung adenocarcinoma confirmed by pathology from June 2020 to February 2022 were retrospectively analyzed. All patients underwent dual-phase energy spectrum CT examination, and serum CEA and CA-125 levels before treatment were clear. Based on postoperative pathological results, patients were divided into two groups, the high expression group of Ki-67 (>30%) and the low expression group of Ki-67 (≤30%). The iodine value (IC), standardized iodine ratio (NIC), and the slope of the energy spectrum curve (λHU) were measured by a dual-energy post-processing workstation. The expression levels of SERUM CEA and CA-125 before treatment were obtained according to medical records. Statistical analysis of the data was performed with SPSS 22.0; t-test or Mann−Whitney U test and
[1] |
TRAVIS W D, BRAMBILLA E, NOGUCHI M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: International multidisciplinary classification of lung adenocarcinoma[J]. Journal of Thoracic Oncology, 2011, 6(2): 244−285. doi: 10.1097/JTO.0b013e318206a221
|
[2] |
ZHANG J, WU J, TAN Q, et al. Why do pathological stage IA lung adenocarcinomas vary from prognosis? A clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification[J]. Journal of Thoracic Oncology, 2013, 8(9): 1196−1202. doi: 10.1097/JTO.0b013e31829f09a7
|
[3] |
陈海瑞, 李文才, 陈天东, 等. 原发性肺腺癌组织亚型及预后[J]. 河南医学研究, 2017,26(18): 3271−3273. doi: 10.3969/j.issn.1004-437X.2017.18.003
CHEN H R, LI W C, CHEN T D, et al. Subtypes and prognosis of primary lung adenocarcinoma[J]. Henan Medical Research, 2017, 26(18): 3271−3273. (in Chinese). doi: 10.3969/j.issn.1004-437X.2017.18.003
|
[4] |
WARTH A, MULEY T, MEISTER M, et al. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival[J]. Journal of Clinical Oncology, 2012, 30(13): 1438−1446. doi: 10.1200/JCO.2011.37.2185
|
[5] |
ROSS D T, SCHERF U, EISEN M B, et al. Systematic variation in gene expression patterns in human cancer cell lines[J]. Nature Genetics, 2000, 24(3): 227. doi: 10.1038/73432
|
[6] |
MARTIN B, PAESMANS M, MASCAUX C, et al. Ki-67 expression and patients survival in lung cancer: Systematic review of the literature with meta-analysis[J]. British Journal of Cancer, 2004, 91(12): 2018−2025. doi: 10.1038/sj.bjc.6602233
|
[7] |
ISHIBASHI N, MAEBAYASHI T, AIZAWA T, et al. Correlation between the Ki-67 proliferation index and response to radiation therapy in small cell lung cancer[J]. Radiation Oncology, 2017, 12(16): 3−7.
|
[8] |
LI Y, PAN Y, WANG R, et al. ALK-rearranged lung cancer in Chinese: A comprehensive assessment of clinicopathology, IHC, FISH and RT-PCR[J]. Plos One, 2013, 8(7): e69016. doi: 10.1371/journal.pone.0069016
|
[9] |
TOMIYAMA N, YASUHARA Y, NAKAJIMA Y, et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan[J]. European Journal of Radiology, 2006, 59(1): 60−64. doi: 10.1016/j.ejrad.2006.02.001
|
[10] |
SHAN L, LIAN F, GUO L, et al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: Comparison of IHC, FISH and Real-Time RT-PCR[J]. Plos One, 2015, 10(3): e0120422. doi: 10.1371/journal.pone.0120422
|
[11] |
THIEME S F, GRAUTE V, NIKOLAOU K, et al. Dual energy CT lung perfusion imaging: Correlation with SPECT/CT[J]. European Journal of Radiology, 2012, 81(2): 360−365. doi: 10.1016/j.ejrad.2010.11.037
|
[12] |
MCCOLLOUGH C H, LENG S, YU L, et al. Dual- and multi-energy CT: Principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3): 637−653. doi: 10.1148/radiol.2015142631
|
[13] |
LI G J, GAO J, WANG G L, et al. Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer[J]. Clinical Radiology, 2016, 71(4): 363−368. doi: 10.1016/j.crad.2015.12.013
|
[14] |
KARCAALTINCABA M, AKTAS A. Dual-energy CT revisited with multidetector CT: Review of principles and clinical applications[J]. Diagnostic and Interventional Radiology, 2011, 17(3): 181−194.
|
[15] |
de CECCO C N, DARNELL A, RENGO M, et al. Dual-energy CT: Oncologic applications[J]. American Journal of Roentgenology, 2012, 199(l): 98−105.
|
[16] |
FORNARO J, LESCHKA S, HIBBELN D, et al. Dual- and multi-energy CT: Approach to functional imaging[J]. Insights Imaging, 2011, 2(2): 149e59.
|
[17] |
LIN L Y, ZHANG Y, SUO S T, et al. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer[J]. Clinical Radiology, 2018, 73(4): 412.e1−412.e7. doi: 10.1016/j.crad.2017.11.004
|
[18] |
YANG F, DONG J, WANG X, et al. Non-small cell lung cancer: Spectral computed tomography quantitative parameters for preoperative diagnosis of metastatic lymph nodes[J]. European Journal of Radiology, 2017, 89: 129−135.
|
[19] |
SALGIA R, HARPOLE D, HERNDON J A, et al. Role of serum tumor markers CA 125 and CEA in non-small cell lung cancer[J]. Anticancer Research, 2001, 21(2B): 1241−1246.
|