ISSN 1004-4140
CN 11-3017/P
PENG J, LI Q J, GAO J H, et al. Application of Electromagnetic Waves for Karst Exploration in Urban Tunnels[J]. CT Theory and Applications, 2023, 32(4): 471-479. DOI: 10.15953/j.ctta.2022.184. (in Chinese).
Citation: PENG J, LI Q J, GAO J H, et al. Application of Electromagnetic Waves for Karst Exploration in Urban Tunnels[J]. CT Theory and Applications, 2023, 32(4): 471-479. DOI: 10.15953/j.ctta.2022.184. (in Chinese).

Application of Electromagnetic Waves for Karst Exploration in Urban Tunnels

More Information
  • Received Date: September 18, 2022
  • Revised Date: October 24, 2022
  • Accepted Date: November 18, 2022
  • Available Online: January 02, 2023
  • Published Date: July 30, 2023
  • With rapid urbanization, the contradiction between traffic and the environmental pollution caused by it is becoming increasingly prominent. To preserve ground buildings, an increasing number of tunnel schemes are adopted. Urban Karst exploration is based on drilling, supplemented by traditional geophysical methods such as high-density electrical method and shallow seismic reflection method, which are inefficient and difficult to implement owing to site conditions. As a geophysical exploration technology developed in recent years, electromagnetic wave technology has the advantages of high resolution and convenient field operation, which can better reveal the development scale and characteristics of underground Karst. Based on traditional data processing, setting the minimum value, choosing the reflection projection result as the initial model, using the low-pass filtering and angle-limiting technology, and adopting the structure program of continuous survey mode to carry out normalized calculation processing can greatly improve the accuracy of electromagnetic wave CT data interpretation. The findings of this study show that the electromagnetic wave detection technology can be applied effectively in Karst exploration, and its detection results have great guiding significance in urban tunnel engineering.
  • [1]
    罗彩红, 邢健, 郭蕾, 等. 基于井间电磁CT探测的岩溶空间分布特征[J]. 岩土力学, 2016,(S1): 669−673. doi: 10.16285/j.rsm.2016.S1.088

    LUO C H, XING J, GUO L, et al. Spatial distribution charac-teristics of Karst based on cross hole electromagnetic CT detection[J]. Rock and Soil Mechanics, 2016, (S1): 669−673. (in Chinese). doi: 10.16285/j.rsm.2016.S1.088
    [2]
    任启磊. 岩溶地区工程地质勘察方法技术应用[J]. 资源信息与工程, 2018,(3): 12−13. doi: 10.3969/j.issn.2095-5391.2018.03.006

    REN Q L. Application of engineering geological prospecting method and technology in Karst area[J]. Resource Information and Engineering, 2018, (3): 12−13. (in Chinese). doi: 10.3969/j.issn.2095-5391.2018.03.006
    [3]
    王薇, 邓小虎, 金聪, 等. 电磁波CT揭露重大工程岩溶发育特征—以某地铁岩溶勘察为例[J]. 科学技术与工程, 2020,20(34): 13977−13982. doi: 10.3969/j.issn.1671-1815.2020.34.004

    WANG W, DENG X H, JIN C, et al. The characteristics of development in major projects revealed by electromagnetic wave computed tomography: A case for Karst investigation of a metro[J]. Science Technology and Engineering, 2020, 20(34): 13977−13982. (in Chinese). doi: 10.3969/j.issn.1671-1815.2020.34.004
    [4]
    周黎明, 付代光, 肖国强, 等. 基于电磁波CT技术的德厚水库帷幕地质情况分析[J]. 人民长江, 2016,47(22): 55−59. doi: 10.16232/j.cnki.1001-4179.2016.22.011

    ZHOU L M, FU D G, XIAO G Q, et al. Analysis of curtain geology of Dehou reservoir based on electromagnetic CT technology[J]. Yangtze River, 2016, 47(22): 55−59. (in Chinese). doi: 10.16232/j.cnki.1001-4179.2016.22.011
    [5]
    赵威. 电磁波CT几种常用成像方法应用效果对比[J]. 工程地球物理学报, 2019,16(5): 749−751. doi: 10.3969/j.issn.1672-7940.2019.05.032

    ZHAO W. Comparison of the application effect of several common imaging methods of electromagnetic wave CT[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 749−751. (in Chinese). doi: 10.3969/j.issn.1672-7940.2019.05.032
    [6]
    黄生根, 刘东军, 胡永健. 电磁波CT技术探测溶洞的模拟分析与应用研究[J]. 岩土力学, 2018,39(S1): 544−550. doi: 10.16285/j.rsm.2017.2292

    HUANG S G, LIU D J, HU Y J. Simulation analysis and application of electromagnetic wave CT technique in Karst cave detection[J]. Rock and Soil Mechanics, 2018, 39(S1): 544−550. (in Chinese). doi: 10.16285/j.rsm.2017.2292
    [7]
    陈川. 电磁波CT在赤水河大桥主承台岩溶探测中的应用[J]. 岩土工程技术, 2020,34(3): 150−154. doi: 10.3969/j.issn.1007-2993.2020.03.006

    CHEN C. Application of electromagnetic wave CT in Karst detection of main cap of Chishui River Bridge[J]. Geotechnical Engineering Technique, 2020, 34(3): 150−154. (in Chinese). doi: 10.3969/j.issn.1007-2993.2020.03.006
    [8]
    罗小杰. 武汉地区浅层岩溶发育特征与岩溶塌陷灾害防治[J]. 中国岩溶, 2013,32(4): 419−432.

    LUO X J. Characteristics of shallow Karst development and Karst collapse disaster prevention in Wuhan area[J]. China Karst, 2013, 32(4): 419−432. (in Chinese).
    [9]
    徐智勇, 王俊, 王时平. 井间电磁波CT在昆明地铁岩溶区地质勘察中的应用[J]. CT理论与应用研究, 2018,27(5): 617−626. DOI: 10.15953/j.1004-4140.2018.27.05.08.

    XU Z Y, WANG J, WANG S P. Application of interwell electromagnetic wave CT in geological exploration of Kunming metro Karst area[J]. CT Theory and Applications, 2018, 27(5): 617−626. DOI: 10.15953/j.1004-4140.2018.27.05.08. (in Chinese).
    [10]
    周欣, 刘涛, 尹极. 电磁波CT技术在溶洞勘察中的应用效果分析[J]. CT理论与应用研究, 2012,21(4): 659−666.

    ZHOU X, LIU T, YIN J. Analysis of application effect of electromagnetic wave CT technique in Karst cave investigation[J]. CT Theory and Applications, 2012, 21(4): 659−666. (in Chinese).
    [11]
    孙茂锐, 王双六. 电磁波CT二维与三维成像应用[J]. 物探与化探, 2015,39(3): 641−645. doi: 10.11720/wtyht.2015.3.36

    SUN M Y, WANG S L. The application of electromagnetic wave CT of the 2D and 3D imaging[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 641−645. (in Chinese). doi: 10.11720/wtyht.2015.3.36
    [12]
    官善友, 蒙核量, 周淼. 武汉市岩溶分布与发育规律[J]. 城市勘测, 2008,(4): 145−149. doi: 10.3969/j.issn.1672-8262.2008.04.044

    GUAN S Y, MENG H L, ZHOU M. Distribution and development of Karst in Wuhan[J]. Urban Geotechnical Investigation & Surveying, 2008, (4): 145−149. (in Chinese). doi: 10.3969/j.issn.1672-8262.2008.04.044
    [13]
    彭耀, 董艳平, 樊永生, 等. 井间电磁波CT技术在武汉地区三叠系大冶组岩溶勘察中的应用研究[J]. CT理论与应用研究, 2016,25(4): 419−424. DOI: 10.15953/j.1004-4140.2016.25.04.05.

    PENG Y, DONG Y P, FAN Y S, et al. Application research of CT technique of interwell electromagnetic wave in Karst exploration of Triassic Daye Formation in Wuhan area[J]. CT Theory and Applications, 2016, 25(4): 419−424. DOI: 10.15953/j.1004-4140.2016.25.04.05. (in Chinese).
    [14]
    陈春飞, 沈晓武, 张秉政. 基于电磁波层析成像技术的岩溶探测正演模拟及应用研究[J]. 工程地球物理学报. 2021, (1): 98-106.

    CHEN C F, SHEN X W, ZHANG B Z. Study on forward modeling and application of Karst detection based on Electromagnetic tomography[J]. Chinese Journal of Engineering Geophysics, 2021, (1): 98-106.
    [15]
    吴茂林, 胡富彭, 胡雄武. 城市地下空间地质异常体井间综合CT探查[J]. 工程地球物理学报, 2018,(6): 812−816. doi: 10.3969/j.issn.1672-7940.2018.06.019

    WU M L, HU F P, HU X W. Interwell comprehensive CT exploration of geological anomalies in urban underground space[J]. Chinese Journal of Engineering Geophysics, 2018, (6): 812−816. (in Chinese). doi: 10.3969/j.issn.1672-7940.2018.06.019
    [16]
    郭彦刚. 井间地震层析成像技术及应用研究[D]. 成都: 成都理工大学, 2012.

    GUO Y G. Study on cross-well seismic tomography and its application[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese)
  • Cited by

    Periodical cited type(3)

    1. 曹家晟,李保磊. 光子计数X射线CT能量成像精度影响因素分析. CT理论与应用研究(中英文). 2025(02): 255-262 .
    2. 郭杰,蔡爱龙,王少宇,郑治中,李磊,闫镔. 光子计数探测器投影数据噪声的p-范分布统计分析. 光学学报. 2024(03): 102-110 .
    3. 赵利军,曹聪颖,张晋京,赵杰,陈彬涛,王安红. 压缩图像增强方法研究综述. 计算机工程与应用. 2023(21): 26-38 .

    Other cited types(6)

Catalog

    Article views (364) PDF downloads (64) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return