Citation: | ZHANG J H, QIAO Z W. Computed Tomography Reconstruction Algorithm Based on Relative Total Variation Minimization[J]. CT Theory and Applications, 2023, 32(2): 153-169. DOI: 10.15953/j.ctta.2022.190. (in Chinese). |
[1] |
PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2008, 25(12): 1230009.
|
[2] |
SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777−4807.
|
[3] |
YU L, YU Z, SIDKY E Y, et al. Region of interest reconstruction from truncated data in circular cone-beam CT[J]. IEEE Transactions on Medical Imaging, 2006, 25(7): 869−881. doi: 10.1109/TMI.2006.872329
|
[4] |
CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
|
[5] |
VOGEL C R. Iterative method for total variation denoising[J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227−238. doi: 10.1137/0917016
|
[6] |
SIDKY E Y, EMIL Y, KAO C M, et al. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-ray Science & Technology, 2006, 14: 119−139.
|
[7] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52: 1289-1306.
|
[8] |
LIU B, KATSEVICH A, YU H. Interior tomography with curvelet-based regularization[J]. Journal of X-ray Science and Technology, 2016, 25(1): 1−13.
|
[9] |
SIDKY E Y, CHARTRAND R, BOONE J M, et al. Constrained TpV minimization for enhanced exploitation of gradient sparsity: Application to CT image reconstruction[J]. IEEE Journal of Translational Engineering in Health & Medicine, 2014, 2(6): 1−18.
|
[10] |
CHAMBOLLE A, POCK T. An introduction to continuous optimization for imaging[J]. Acta Numerica, 2016, 25: 161-319.
|
[11] |
MBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120−145. doi: 10.1007/s10851-010-0251-1
|
[12] |
SIDKY E Y, JRGENSEN J H, PAN X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm[J]. Physics in Medicine & Biology, 2011, 57(10): 3065−3091.
|
[13] |
XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139.
|
[14] |
RIGIE D S, RIVIèRE P L. Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization[J]. Physics in Medicine & Biology, 2015, 60(5): 1741.
|
[15] |
QIAO Z, REDLER G, EPEL B, et al. A balanced total-variation-Chambolle-Pock algorithm for EPR imaging[J]. Journal of Magnetic Resonance, 2021, 328: 107009. doi: 10.1016/j.jmr.2021.107009
|
[16] |
闫慧文, 乔志伟. 基于ASD-POCS框架的高阶TpV图像重建算法[J]. CT理论与应用研究, 2021,30(3): 279−289. DOI: 10.15953/j.1004-4140.2021.30.03.01.
YAN H W, QIAO Z W. High order TPV image reconstruction algorithm based on ASD-POCS framework[J]. CT Theory and Applications, 2021, 30(3): 279−289. DOI: 10.15953/j.1004-4140.2021.30.03.01. (in Chinese).
|
[17] |
XIN J, LIANG L, CHEN Z, et al. Anisotropic total variation minimization method for limited-angle CT reconstruction[C]//Proc. SPIE 8506, Developments in X-ray Tomography VIII, 85061C, 2012. https://doi.org/10.1117/12.930339.
|
[18] |
YU H, WANG G. A soft-threshold filtering approach for reconstruction from a limited number of projections[J]. Physics in Medicine & Biology, 2010, 55(13): 3905−3916.
|
[19] |
乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法[J]. 物理学报, 2018,67(19): 198701. DOI: 10.7498/aps.67.20180839.
QIAO Z W. Total variation constrained data separation minimum image reconstruction model and its Chambolle-Pock algorithm[J]. Acta Physica Sinica, 2018, 67(19): 198701. DOI: 10.7498/aps.67.20180839. (in Chinese).
|
[20] |
YU Z, NOO F, DENNERLEIN F, et al. Simulation tools for two-dimensional experiments in X-ray computed tomography using the FORBILD head phantom[J]. Physics in Medicine & Biology, 2012, 57(13): 237−252.
|
[21] |
SIDDON R L. Fast calculation of the exact radiological path for a three-dimensional CT array[J]. Medical Physics, 1985, 12(2): 252−255. doi: 10.1118/1.595715
|
[22] |
GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471−481. doi: 10.1016/0022-5193(70)90109-8
|
1. |
王军辉. 低剂量胸部CT扫描诊断肺癌的临床价值研究. 中国城乡企业卫生. 2024(09): 140-143 .
![]() | |
2. |
刘晓静,吴红英,马金强,雷子乔,余建明. 双层探测器光谱CT虚拟平扫在儿童胸部CT增强扫描中的应用. CT理论与应用研究. 2024(06): 709-716 .
![]() | |
3. |
朱宏历,徐川,徐君逸. 中医化痰散结化瘀联合审因论治肺小结节的效果. 中国城乡企业卫生. 2023(09): 132-134 .
![]() | |
4. |
罗彩华. 孤立性肺小结节的胸部高分辨CT诊断与病理检查结果对比. 世界复合医学. 2023(05): 95-98 .
![]() | |
5. |
帕丽旦·尼亚孜,伊斯拉木江·吐尔逊,王姗姗. 肺小磨玻璃结节胸腔镜切除术前CT引导下Hook-wire定位的应用价值. 实用临床医药杂志. 2022(15): 36-39+44 .
![]() | |
6. |
张华. 不同剂量128层螺旋CT扫描孤立性肺内结节的诊断价值比较. 实用中西医结合临床. 2022(13): 66-68 .
![]() | |
7. |
贾欣,刘浩岩. 低剂量CT联合迭代重建技术在早期肺癌及肺部结节中的应用. 中外医学研究. 2022(32): 80-84 .
![]() | |
8. |
吴景强,赖发明,邓开盛. 超高分辨率CT对小于3 cm肺孤立性磨玻璃密度结节的诊断价值. 深圳中西医结合杂志. 2022(24): 78-81 .
![]() |