ISSN 1004-4140
CN 11-3017/P
ZHANG J H, QIAO Z W. Computed Tomography Reconstruction Algorithm Based on Relative Total Variation Minimization[J]. CT Theory and Applications, 2023, 32(2): 153-169. DOI: 10.15953/j.ctta.2022.190. (in Chinese).
Citation: ZHANG J H, QIAO Z W. Computed Tomography Reconstruction Algorithm Based on Relative Total Variation Minimization[J]. CT Theory and Applications, 2023, 32(2): 153-169. DOI: 10.15953/j.ctta.2022.190. (in Chinese).

Computed Tomography Reconstruction Algorithm Based on Relative Total Variation Minimization

More Information
  • Received Date: September 24, 2022
  • Revised Date: October 12, 2022
  • Accepted Date: October 16, 2022
  • Available Online: November 03, 2022
  • Published Date: March 30, 2023
  • The total variation (TV) minimization algorithm is an effective CT image reconstruction algorithm that can reconstruct sparse or noisy projection data with high accuracy. However, in some cases, the TV algorithm produces stepped artifacts. The relative TV algorithm outperforms TV algorithm in the field of image denoising. In view of this, the relative TV model is introduced into image reconstruction, a relative TV minimum optimization model is proposed, and the corresponding solution algorithm is designed under the framework of adaptive gradient descent projection to the convex set (ASD-POCS) to further improve reconstruction accuracy. The reconstruction experiments were conducted with Shepp Logan, Forbild, and real CT image simulation models to verify the anti-crime ability of the algorithm and evaluate the sparse reconstruction and anti-noise abilities of the algorithm. The experimental findings reveal that the algorithm outperforms the TV method in terms of anti-crime capability and the ability to reconstruct sparse or noisy projection data with high precision. Compared with the TV algorithm, the algorithm can achieve higher reconstruction accuracy.
  • [1]
    PAN X, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2008, 25(12): 1230009.
    [2]
    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777−4807.
    [3]
    YU L, YU Z, SIDKY E Y, et al. Region of interest reconstruction from truncated data in circular cone-beam CT[J]. IEEE Transactions on Medical Imaging, 2006, 25(7): 869−881. doi: 10.1109/TMI.2006.872329
    [4]
    CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    [5]
    VOGEL C R. Iterative method for total variation denoising[J]. SIAM Journal on Scientific Computing, 1996, 17(1): 227−238. doi: 10.1137/0917016
    [6]
    SIDKY E Y, EMIL Y, KAO C M, et al. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-ray Science & Technology, 2006, 14: 119−139.
    [7]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52: 1289-1306.
    [8]
    LIU B, KATSEVICH A, YU H. Interior tomography with curvelet-based regularization[J]. Journal of X-ray Science and Technology, 2016, 25(1): 1−13.
    [9]
    SIDKY E Y, CHARTRAND R, BOONE J M, et al. Constrained TpV minimization for enhanced exploitation of gradient sparsity: Application to CT image reconstruction[J]. IEEE Journal of Translational Engineering in Health & Medicine, 2014, 2(6): 1−18.
    [10]
    CHAMBOLLE A, POCK T. An introduction to continuous optimization for imaging[J]. Acta Numerica, 2016, 25: 161-319.
    [11]
    MBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120−145. doi: 10.1007/s10851-010-0251-1
    [12]
    SIDKY E Y, JRGENSEN J H, PAN X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm[J]. Physics in Medicine & Biology, 2011, 57(10): 3065−3091.
    [13]
    XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 139.
    [14]
    RIGIE D S, RIVIèRE P L. Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization[J]. Physics in Medicine & Biology, 2015, 60(5): 1741.
    [15]
    QIAO Z, REDLER G, EPEL B, et al. A balanced total-variation-Chambolle-Pock algorithm for EPR imaging[J]. Journal of Magnetic Resonance, 2021, 328: 107009. doi: 10.1016/j.jmr.2021.107009
    [16]
    闫慧文, 乔志伟. 基于ASD-POCS框架的高阶TpV图像重建算法[J]. CT理论与应用研究, 2021,30(3): 279−289. DOI: 10.15953/j.1004-4140.2021.30.03.01.

    YAN H W, QIAO Z W. High order TPV image reconstruction algorithm based on ASD-POCS framework[J]. CT Theory and Applications, 2021, 30(3): 279−289. DOI: 10.15953/j.1004-4140.2021.30.03.01. (in Chinese).
    [17]
    XIN J, LIANG L, CHEN Z, et al. Anisotropic total variation minimization method for limited-angle CT reconstruction[C]//Proc. SPIE 8506, Developments in X-ray Tomography VIII, 85061C, 2012. https://doi.org/10.1117/12.930339.
    [18]
    YU H, WANG G. A soft-threshold filtering approach for reconstruction from a limited number of projections[J]. Physics in Medicine & Biology, 2010, 55(13): 3905−3916.
    [19]
    乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法[J]. 物理学报, 2018,67(19): 198701. DOI: 10.7498/aps.67.20180839.

    QIAO Z W. Total variation constrained data separation minimum image reconstruction model and its Chambolle-Pock algorithm[J]. Acta Physica Sinica, 2018, 67(19): 198701. DOI: 10.7498/aps.67.20180839. (in Chinese).
    [20]
    YU Z, NOO F, DENNERLEIN F, et al. Simulation tools for two-dimensional experiments in X-ray computed tomography using the FORBILD head phantom[J]. Physics in Medicine & Biology, 2012, 57(13): 237−252.
    [21]
    SIDDON R L. Fast calculation of the exact radiological path for a three-dimensional CT array[J]. Medical Physics, 1985, 12(2): 252−255. doi: 10.1118/1.595715
    [22]
    GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471−481. doi: 10.1016/0022-5193(70)90109-8
  • Cited by

    Periodical cited type(8)

    1. 王军辉. 低剂量胸部CT扫描诊断肺癌的临床价值研究. 中国城乡企业卫生. 2024(09): 140-143 .
    2. 刘晓静,吴红英,马金强,雷子乔,余建明. 双层探测器光谱CT虚拟平扫在儿童胸部CT增强扫描中的应用. CT理论与应用研究. 2024(06): 709-716 . 本站查看
    3. 朱宏历,徐川,徐君逸. 中医化痰散结化瘀联合审因论治肺小结节的效果. 中国城乡企业卫生. 2023(09): 132-134 .
    4. 罗彩华. 孤立性肺小结节的胸部高分辨CT诊断与病理检查结果对比. 世界复合医学. 2023(05): 95-98 .
    5. 帕丽旦·尼亚孜,伊斯拉木江·吐尔逊,王姗姗. 肺小磨玻璃结节胸腔镜切除术前CT引导下Hook-wire定位的应用价值. 实用临床医药杂志. 2022(15): 36-39+44 .
    6. 张华. 不同剂量128层螺旋CT扫描孤立性肺内结节的诊断价值比较. 实用中西医结合临床. 2022(13): 66-68 .
    7. 贾欣,刘浩岩. 低剂量CT联合迭代重建技术在早期肺癌及肺部结节中的应用. 中外医学研究. 2022(32): 80-84 .
    8. 吴景强,赖发明,邓开盛. 超高分辨率CT对小于3 cm肺孤立性磨玻璃密度结节的诊断价值. 深圳中西医结合杂志. 2022(24): 78-81 .

    Other cited types(0)

Catalog

    Article views (769) PDF downloads (171) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return