Citation: | ZHAO H S, WANG C, HAN S G, et al. The Diagnostic Value of Dual-source CT in Adult Atrial Septal Defect with Pulmonary Hypertension[J]. CT Theory and Applications, 2023, 32(6): 761-769. DOI: 10.15953/j.ctta.2022.199. (in Chinese). |
Objective: To investigate the diagnostic value of dual-source CT (DSCT) in evaluating adults with atrial septal defect (ASD) with pulmonary hypertension (PAH). Methods: Seventy-five adult patients with ASD in our hospital were retrospectively analyzed. The study sample was divided into 2 groups (PAH group (n=40) and non-PAH group (n=35 cases)) according to the mean pulmonary artery pressure (mPAP) obtained by right cardiac catheterization (RHC) (PAH: ≥ 25 mmHg). All patients were examined for congenital heart disease by DSCT one week before RHC. The ascending aorta diameter (AAD), main pulmonary artery diameter (MPAD), right pulmonary artery diameter (RPAD), left pulmonary artery diameter (LPAD), right lower pulmonary artery diameter (RLPAD), the maximum diameter of the short axis of both the ventricles (RVD, LVD), included the angle of the spinal ventricular septum and ASD diameter, were measured on the image. The MPAD to AAD ratio (rPA) and the RVD to LVD ratio (RVD/LVD) were calculated. Differences between the two groups in terms of clinical data, RHC indexes, and CT cardiovascular parameters were evaluated by a t-test. The ROC curve was used to determine the diagnostic efficacy of DSCT in adults with ASD and PAH. Pearson correlation coefficient was used to analyze the association between the CT parameters, mPAP, and PVR. Results: The statistically significant CT indexes between the two groups were MPAD, RPAD, LPAD, RLPAD, RVD including the angle of the spinal ventricular septum, rPA, RVD/LVD, and ASD diameter. Of these, the RPAD and LPAD including the angle of the spinal ventricular septum, rPA, RVD/LVD, and ASD diameter demonstrated moderate diagnostic efficacy for PAH (AUC>0.7). The MPAD, rPA, and ASD diameter with mPAP were moderately positively correlated. The MPAD, rPA, and RVD/LVD with PVR were also mildly positively correlated. Furthermore, the ASD diameter and PVR were highly positively correlated. Conclusion: DSCT is diagnostically valuable for the evaluation of adults with ASD complicated with PAH. In particular, DSCT may be used to provide a comprehensive evaluation before clinical treatment, as well as for long-term follow-up and management.
[1] |
BRIDA M, CHESSA M, CELERMAJER D, et al. Atrial sepals defect in adulthood: A new paradigm for congenital heart disease[J]. Europen Heart Journal, 2022, 43(28): 2660−2671. doi: 10.1093/eurheartj/ehab646
|
[2] |
MANDRAS S A, MEHTA H S, VAIDYA A. Pulmonary hypertension: A brief guide for clinicians[J]. Mayo Clinic Proceedings, 2020, 95(9): 1978−1988. doi: 10.1016/j.mayocp.2020.04.039
|
[3] |
中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021,101(1): 11−51. doi: 10.3760/cma.j.cn112137-20201008-02778
Group of Pulmonary Embolism and Pulmonary Vascular Disease, Respiratory Branch of Chinese Medical Association, Working Committee of Pulmonary Embolism and Pulmonary Vascular Disease, Respiratory Branch of Chinese Medical Association. Chinese guidelines for diagnosis and treatment of pulmonary hypertension (2021 Edition)[J]. Chinese Medical Journal, 2021, 101(1): 11−51. (in Chinese). doi: 10.3760/cma.j.cn112137-20201008-02778
|
[4] |
ENGELFRIET P M, DUFFELS M G, MÖLLER T, et al. Pulmonary arterial hypertension in adults born with a heart septal defect: The euro heart survey on adult congenital heart disease[J]. Heart, 2007, 93(6): 682−687. doi: 10.1136/hrt.2006.098848
|
[5] |
宋会军, 刘琼, 金敬琳, 等. 房间隔缺损大小二维经胸超声心动图、二维及三维CT血管造影测量对比研究[J]. 中国介入心脏病学杂志, 2021,29(6): 318−323. doi: 10.3969/j.issn.1004-8812.2021.06.005
SONG H J, LIU Q, JIN J L, et al. Comparative study of atrial septal defect size by two-dimensional transthoracic echocardiography, two-dimensional and three-dimensional CT angiography[J]. Chinese Journal of Interventional Cardiology, 2021, 29(6): 318−323. (in Chinese). doi: 10.3969/j.issn.1004-8812.2021.06.005
|
[6] |
LATSON L, BRISTON D. Atrial septal defect: Transcatheter closure is not bad, but there is more to the story[J]. JACC-Cardiovascular Interventions, 2021, 14(5): 576−577. doi: 10.1016/j.jcin.2021.01.008
|
[7] |
ZWIJNENBURH R D, BAGGEN V J M, GEENEN L W, et al. The prevalenceof pulmonary arterial hypertension before and after atrial septaldefect closure at adult age: A systematic review[J]. Amercian Heart Journal, 2018, 201: 63−71. doi: 10.1016/j.ahj.2018.03.020
|
[8] |
GALIÈ N, HUMBERT M, VACHIERY J L, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Revista Espanola de Cardiologia (English Edition), 2016, 69(2): 177. doi: 10.1016/j.rec.2016.01.002
|
[9] |
KHEIWA A, HARI P, MADABHUSHI P, et al. Patent foramen ovale and atrial septal defect[J]. Echocardiography, 2020, 37(12): 2172−2184. doi: 10.1111/echo.14646
|
[10] |
BAUMGARTNER H, de BACKER J, BABU-NARAYAN S V, et al. 2020 ESC guidelines for the management of adult congenital heart disease[J]. Europen Heart Journal, 2021, 42(6): 563−645.
|
[11] |
MEYER G M B, SPILIMBERGO F B, ALTMAYER S, et al. Correction to: Multiparametric magnetic resonance imaging in the assessment of pulmonary hypertension: Initial experience of a one-stop study[J]. Lung, 2018, 196(4): 497. doi: 10.1007/s00408-018-0130-x
|
[12] |
张伟, 俞同福, 徐海, 等. CT肺动脉成像对急性肺栓塞患者肺动脉高压严重程度的评估[J]. 放射学实践, 2013,28(3): 324−328. doi: 10.3969/j.issn.1000-0313.2013.03.026
ZHANG W, YU T F, XU H, et al. Assessment of the severity of pulmonary hypertension in patients with acute pulmonary embolism by CT pulmonary artery imaging[J]. Radiological Practice, 2013, 28(3): 324−328. (in Chinese). doi: 10.3969/j.issn.1000-0313.2013.03.026
|
[13] |
梁妍, 胡春峰, 程守全, 等. 心脏磁共振成像对左向右分流型先天性心脏病合并肺动脉高压的诊断价值及右心室功能评估[J]. 中国循证心血管医学杂志, 2022,14(1): 79−83, 86. doi: 10.3969/j.issn.1674-4055.2022.01.18
LIANG Y, HU C F, CHENG S Q, et al. Diagnostic value of cardiac magnetic resonance imaging in left to right shunt congenital heart disease with pulmonary hypertension and evaluation of right ventricular function[J]. Chinese Journal of Evidence based Cardiovascular Medicine, 2022, 14(1): 79−83, 86. (in Chinese). doi: 10.3969/j.issn.1674-4055.2022.01.18
|
[14] |
刘敏, 马展鸿, 郭晓娟, 等. 慢性血栓栓塞性肺动脉高压CTPA测定脊柱室间隔角与右室功能、氨基末端脑钠肽前体的关系[J]. 中华医学杂志, 2011,91(41): 2903−2906. doi: 10.3760/cma.j.issn.0376-2491.2011.41.008
LIU M, MA Z H, GUO X J, et al. CTPA determination of the relationship between spinal ventricular septal angle, right ventricular function and N-terminal pro brain natriuretic peptide in chronic thromboembolic pulmonary hypertension[J]. Chinese Medical Journal, 2011, 91(41): 2903−2906. (in Chinese). doi: 10.3760/cma.j.issn.0376-2491.2011.41.008
|
[15] |
KAYAWAKE H, AOYAMA A, KINOSHITA H, et al. Diameter of the dilated main pulmonary artery in patients with pulmonary hypertension decreases after lung transplantation[J]. Surgery Today, 2020, 50(3): 275−283. doi: 10.1007/s00595-019-01887-6
|
[16] |
CORSON N, ARMATO S G, LABBY Z E, et al. CT-based pulmonary artery measurements for the assessment of pulmonary hypertension[J]. Academic Radiology, 2014, 21(4): 523−530. doi: 10.1016/j.acra.2013.12.015
|
[17] |
周拓. CT肺动脉成像对COPD合并肺动脉高压的诊断价值[J]. 中国CT和MRI杂志, 2019,17(5): 79−82. doi: 10.3969/j.issn.1672-5131.2019.05.024
ZHOU T. Diagnostic value of CT pulmonary artery imaging in COPD with pulmonary hypertension[J]. Chinese Journal of CT and MRI, 2019, 17(5): 79−82. (in Chinese). doi: 10.3969/j.issn.1672-5131.2019.05.024
|
[18] |
WU X G, SHI Y J, WANG X H, et al. Diagnostic value of computed tomography-based pulmonary artery to aorta ratio measurement in chronic obstructive pulmonary disease with pulmonary hypertension: A systematic review and meta-analysis[J]. Clinical Respiratory Journal, 2022, 16(4): 276−283. doi: 10.1111/crj.13485
|
[19] |
CARO-DOMÍNGUEZ P, COMPTON G, HUMPL T, et al. Pulmonary arterial hypertension in children: Diagnosis using ratio of main pulmonary artery to ascending aorta diameter as determined by multi-detector computed tomography[J]. Pediatric Radiology, 2016, 46(10): 1378−1383. doi: 10.1007/s00247-016-3636-5
|
[20] |
TRUONG Q A, MASSARO J M, ROGERS I S, et al. Reference values for normal pulmonary artery dimensions by noncontract cardiac computed tomography: The framingham heart study[J]. Circulation Cardiovascular Imaging, 2012, 5(1): 147−154. doi: 10.1161/CIRCIMAGING.111.968610
|
[21] |
LIANG H W, ZHAO D L, LIU X D, et al. ECG-gated pulmonary artery CTA for evaluation of right ventricular function in patients with acute pulmonary embolism[J]. Echocardiography, 2017, 34(2): 257−263. doi: 10.1111/echo.13419
|
[22] |
LI D, TANG X, ZHU Y, et al. Pulmonary artery size measurements: A comparison study between electrocardiogram-gated and nonelectrocardiogram-gated computed tomography[J]. Journal of Computer Assisted Tomography, 2021, 45(3): 415−420. doi: 10.1097/RCT.0000000000001144
|