Citation: | CHENG X Y, WU X H, HAO Y, et al. Effect of Computed Tomography Window Technique on the Results of Artificial Intelligence Classification of Lung Lesions[J]. CT Theory and Applications, 2023, 32(4): 515-522. DOI: 10.15953/j.ctta.2022.210. (in Chinese). |
[1] |
Van GINNEKEN B. Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning[J]. Radiological Physics and Technology, 2017, 10(1): 23−32. doi: 10.1007/s12194-017-0394-5
|
[2] |
YU X, LU S, GUO L, et al. ResGNet-C: A graph convolutional neural network for detection of COVID-19[J]. Neurocomputing, 2021, 452: 592−605. doi: 10.1016/j.neucom.2020.07.144
|
[3] |
LEE S M, SEO J B, YUN J, et al. Deep learning applications in chest radiography and computed tomography: Current state of the art[J]. Journal of Thoracic Imaging, 2019, 34(2): 75−85. doi: 10.1097/RTI.0000000000000387
|
[4] |
SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285−1298.
|
[5] |
KANG G, LIU K, HOU B, et al. 3D multi-view convolutional neural networks for lung nodule classification[J]. Plos One, 2017, 12(11): 12−22.
|
[6] |
CHENG X, WEN H, YOU H, et al. Recognition of peripheral lung cancer and focal pneumonia on chest computed tomography images based on convolutional neural network[J]. Technology in Cancer Research & Treatment, 2022, 21: 1-12.
|
[7] |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|
[8] |
HUANG G, LIU Z, Van der MAATEN L, et al. Densely connected convolutional networks[C]//In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[9] |
田培林, 徐覃莎, 唐利荣, 等. 胸部CT检查的肺窗技术[J]. 生物医学工程与临床, 2002,6(4): 209−213. doi: 10.3969/j.issn.1009-7090.2002.04.010
TIAN P L, XU Q S, TANG L R, et al. Window techniques for pulmonary image in chest CT[J]. Biomedical Engineering and Clinical Medicine, 2002, 6(4): 209−213. (in Chinese). doi: 10.3969/j.issn.1009-7090.2002.04.010
|
[10] |
张胜超, 陈浩, 秦宣, 等. CT窗口技术在肺磨玻璃结节诊断中的临床意义[J]. 中国现代医学杂志, 2019,29(14): 106−109.
ZHANG S C, CHEN H, QIN X, et al. Clinical significance of CT window technique in the diagnosis and treatment of pulmonary ground-glass nodules[J]. China Journal of Modern Medicine, 2019, 29(14): 106−109. (in Chinese).
|
[11] |
KITAMI A, SANO F, HAYASHI S, et al. Correlation between histological invasiveness and the computed tomography value in pure ground-glass nodules[J]. Surgery Today, 2016, 46(5): 593−598. doi: 10.1007/s00595-015-1208-1
|
[12] |
张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报, 2018,30(1): 90−99.
ZHANG P, XU X N, WANG H W, et al. Computer-aided lung cancer diagnosis approaches base on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(1): 90−99. (in Chinese).
|
[13] |
尹柯, 张久权, 伍建林, 等. 对比卷积神经网络分类模型与放射科医师鉴别浸润性肺腺癌的效能[J]. 中国医学影像技术, 2021,37(9): 1338−1342.
YIN K, ZHANG J Q, WU J L, et al. Comparison on convolutional neural network classification model and radiologists in differentiating invasive lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2021, 37(9): 1338−1342. (in Chinese).
|
[14] |
戴书华, 刘国芳, 向东生. 肺磨玻璃结节CT值测量在早期癌症诊断中的意义[J]. 中华肺部疾病杂志(电子版), 2019,12(6): 770−771.
DAI S H, LIU G F, XIANG D S. The significance of CT value measurement of pulmonary ground glass nodule in early cancer diagnosis[J]. Chinese Journal of Lung Diseases Electronic Edition, 2019, 12(6): 770−771. (in Chinese).
|
[15] |
HE S, CHEN C, WANG Z, et al. The use of the mean computed tomography value to predict the invasiveness of ground-glass nodules: A meta-analysis[J]. Asian Journal of Surgery, 2022, 18: 1-6.
|