ISSN 1004-4140
CN 11-3017/P
WU C Y. Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting[J]. CT Theory and Applications, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243. (in Chinese).
Citation: WU C Y. Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting[J]. CT Theory and Applications, 2023, 32(6): 703-712. DOI: 10.15953/j.ctta.2022.243. (in Chinese).

Rapid and Continuous Detection Method for Soil-compaction Degrees of Fill Foundation Based on Multichannel Transient Rayleigh Wave Detecting

More Information
  • Received Date: December 01, 2022
  • Revised Date: January 06, 2023
  • Accepted Date: January 12, 2023
  • Available Online: February 19, 2023
  • To address the large treatment area and tight construction period of large-scale engineering site filling foundations and to ensure the quality and progress of the project, understanding the foundation-reinforcement treatment quickly and accurately is essential. Additionally, to ensure the safety and stability of projects, large-scale projects often have higher requirements for the uniformity of the foundation-soil reinforcement effect. The quality-evaluation indices of foundation-soil compaction and reinforcement mainly include the foundation-bearing capacity, foundation-soil deformation modulus, and compaction coefficient. Conventional testing methods primarily include in-situ loading tests, in-situ sand filling, and soil-sample testing. These methods are either labor-intensive and time-consuming or harmful to the reinforced foundation-soil mass, preventing rapid and continuous detection of the foundation-soil mass. To perform rapid and continuous detection of the compaction and reinforcement effects of foundation-soil mass, the multichannel transient Rayleigh wave-detection method, considering the time difference phase between channels, was used in this study. Additionally, the method was supplemented by the sampling tests of soil mass at selected points in this study. Consequently, continuous three-dimensional imaging of the elastic wave velocity of the foundation-soil mass was obtained, along with the horizontal slice of the Rayleigh wave phase velocity imaging and the horizontal-distribution imaging of the depth-average compaction coefficient of the foundation-soil mass. The results reveal that the foundation-soil mass imaging can accurately reflect the compaction and reinforcement effects of the foundation-soil mass, thereby providing a reliable basis for evaluating the quality of foundation-soil mass reinforcement.

  • [1]
    JGJ 79-2012, 建筑地基处理技术规范[S]. 北京: 中国规划出版社, 2012.
    [2]
    王少锋. 天津快速轨道软土地基处理对策及效果分析[J]. 铁道建筑, 2003, (6): 46-48.

    WANG S F, Countermeasures and effect analysis of soft soil foundation treatment for Tianjin fast track[J]. Railway Engineering, 2003, (6): 46-48. (in Chinese).
    [3]
    王树栋, 娄国充. 水泥搅拌桩在天津沿海软基加固中的应用[J]. 铁道建筑, 2008,(10): 88−89. doi: 10.3969/j.issn.1003-1995.2008.10.027

    WANG S D, LOU G C. Application of cement mixing pile in Tianjin coastal soft foundation reinforcement[J]. Railway Engineering, 2008, (10): 88−89. (in Chinese). doi: 10.3969/j.issn.1003-1995.2008.10.027
    [4]
    GB 50202-2018, 建筑地基基础工程施工质量验收标准[S]. 北京: 中国规划出版社, 2018.
    [5]
    GB/T50123-2019, 土工试验方法标准[S]. 北京: 中国规划出版社, 2019.
    [6]
    孔得天, 李高, 郑旭辉, 等. 弹性波CT技术在大足石刻岩体破碎带探测中的应用[J]. CT理论与应用研究, 2018,27(1): 35−44. DOI: 10.15935/j.1004-4140.2018.27.01.05.

    KONG D T, LI G, ZHENG X H, et al. Application of elastic wave CT technique on detection of fracture zone in the rock mass of dazu stone carvings[J]. CT Theory and Applications, 2018, 27(1): 35−44. DOI: 10.15935/j.1004-4140.2018.27.01.05. (in Chinese).
    [7]
    向俊锋, 周仕礼, 蒋晓菁, 等. 大足石刻北山168窟围岩病害高频瑞雷波成像[J]. CT理论与应用研究, 2021, 30(4): 425-436. DOI: 10.15953/j.1004-4140.2021.30.04.03.

    XIANG J F, ZHOU S L, JIANG X J, et al. High-frequency Rayleigh wave imaging of diseases in surrounding rock mass of Beishan Cave 168 of Dazu rock carvings[J]. CT Theory and Applications 2021, 30(4): 425-436. DOI:10.15953/j.1004-4140.2021.30.04.03. (in Chinese).
    [8]
    孙进忠, 祁生文, 张辉, 等. 瑞雷波探测方法在工程无损检测中的应用[J]. 工程地质学报, 2004,12(S): 427−432. doi: 10.3969/j.issn.1004-9665.2004.z1.089

    SUN J Z, QI S W, ZHANG H, et al. Application of Rayleigh wave detection in nondestructive testing for engineering[J]. Journal of Engineering Geology, 2004, 12(S): 427−432. (in Chinese). doi: 10.3969/j.issn.1004-9665.2004.z1.089
    [9]
    刘磊, 周富彪, 孙进忠, 等. 考虑道间时差相位的多道瞬态瑞雷波探测方法[J]. 地球物理学进展, 2019,34(1): 331−341. doi: 10.6038/pg2019BB0176

    LIU L, ZHOU F B, SUN J Z, et al. Multichannel method of transient Rayleigh wave detection in considering of arrival time difference phase between channels[J]. Progress in Geophysics, 2019, 34(1): 331−341. (in Chinese). doi: 10.6038/pg2019BB0176
    [10]
    祁生文, 孙进忠, 万智清. 瞬态瑞雷波勘探方法的一点改进[J]. 辽宁工程技术大学学报(自然科学版), 2001,20(4): 466−468. doi: 10.3969/j.issn.1008-0562.2001.04.030

    QI S W, SUN J Z, WAN Z Q. Improvement in transient Rayleigh wave exploration method[J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(4): 466−468. (in Chinese). doi: 10.3969/j.issn.1008-0562.2001.04.030
    [11]
    白朝旭, 刘洋, 王典, 等. 瑞雷波测试技术在岩土工程中的应用研究[J]. 地球物理学进展, 2007,22(6): 1959−1965. doi: 10.3969/j.issn.1004-2903.2007.06.046

    BAI C X, LIU Y, WANG D, et al. Application of Rayleigh wave testing techniques in geotechnical engineering[J]. Progress in Geophysics, 2007, 22(6): 1959−1965. (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.06.046
    [12]
    刘治峰, 孙进忠, 梁向前, 等. 一种地基强夯加固质量三维连续检测方法: 中国, ZL 201310459842.9[P]. 2015-06-17.
    [13]
    田爱苹, 柳亚千, 戴彦杰, 等. 南口污水处理厂强夯处理地基瑞雷波检测[J]. 地球物理学进展, 2009,24(4): 1533−1539. doi: 10.3969/j.issn.1004-2903.2009.04.049

    TIAN A P, LIU Y Q, DAI Y J, et al. Rayleigh wave detection to dynamic consolidation effect of foundation at the Nankou sewage treatment plant[J]. Progress in Geophysics, 2009, 24(4): 1533−1539. (in Chinese). doi: 10.3969/j.issn.1004-2903.2009.04.049
    [14]
    郑治真, 波谱分析基础[M]. 北京: 地震出版社, 1983.
    [15]
    赵鸿儒, 孙进忠, 唐文榜. 全波震相分析的应用[J]. 地球物理学报, 1990,(1): 54−63. doi: 10.3321/j.issn:0001-5733.1990.01.006

    ZHAO H R, SUN J Z, TANG W B. the application of full wave phase analysis[J]. Chinese Journal of Geophysics, 1990, (1): 54−63. (in Chinese). doi: 10.3321/j.issn:0001-5733.1990.01.006
    [16]
    张朋辉, 韩赛超, 张晓东, 等. 吹填砂场地强夯振动特性研究及安全评估[J]. 探矿工程, 2014,41(8): 58−61.

    ZHANG P H, HAN S C, ZHANG X D, et al. Vibration characteristics of dynamic compaction and safety assessment in hydraulic fill site[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2014, 41(8): 58−61. (in Chinese).
    [17]
    GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.

Catalog

    Article views (282) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return