ISSN 1004-4140
CN 11-3017/P
LI G R, SUN Y, ZHANG T T. Advances in the Use of CMR in Subclinical Diabetic Cardiomyopathy[J]. CT Theory and Applications, 2023, 32(6): 836-842. DOI: 10.15953/j.ctta.2022.255. (in Chinese).
Citation: LI G R, SUN Y, ZHANG T T. Advances in the Use of CMR in Subclinical Diabetic Cardiomyopathy[J]. CT Theory and Applications, 2023, 32(6): 836-842. DOI: 10.15953/j.ctta.2022.255. (in Chinese).

Advances in the Use of CMR in Subclinical Diabetic Cardiomyopathy

More Information
  • Received Date: December 24, 2022
  • Revised Date: April 04, 2023
  • Accepted Date: April 05, 2023
  • Available Online: June 26, 2023
  • Diabetic cardiomyopathy (DCM) presents as myocardial fibrosis, left ventricular hypertrophy, and myocardial diastolic abnormalities. Cardiac magnetic resonance (CMR) technology can quickly and accurately determine the myocardial structure and cardiac function of diabetic patients and plays a crucial role in the diagnostic and prognostic evaluation of subclinical DCM. Evaluation of subclinical DCM using CMR technology primarily involves cardiac magnetic resonance-feature tracking (CMR-FT), magnetic resonance spectroscopy (MRS), T1 mapping technology, and magnetic resonance myocardial perfusion imaging. This paper reviews the research progress of CMR technology in the diagnosis of subclinical diabetic cardiomyopathy.

  • [1]
    COLE J B, FLOREZ J C. Genetics of diabetes mellitus and diabetes complications[J]. Nature Reviews. Nephrology, 2020, 16(7): 377−390. DOI: 10.1038/s41581-020-0278-5.
    [2]
    LIU X, YANG Z G, GAO Y, et al. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: A contrast-enhanced cardiovascular magnetic resonance study[J]. Cardiovascular Diabetology, 2018, 17(1): 139. DOI: 10.1186/s12933-018-0782-0.
    [3]
    RUBLER S, DLUGASH J, YUCEOGLU Y Z, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. The American Journal of Cardiology, 1972, 30(6): 595−602. DOI: 10.1016/0002-9149(72)90595-4.
    [4]
    DILLMANN W H. Diabetic cardiomyopathy[J]. Circulation Research, 2019, 124(8): 1160−1162. DOI: 10.1161/CIRCRESAHA.118.314665.
    [5]
    TAN Y, ZHANG Z, ZHENG C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence[J]. Nature Reviews. Cardiology, 2020, 17(9): 585−607. DOI: 10.1038/s41569-020-0339-2.
    [6]
    WANG S, TIAN C, GAO Z, et al. Research status and trends of the diabetic cardiomyopathy in the past 10 years (2012~2021): A bibliometric analysis[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 1018841. DOI: 10.3389/fcvm.2022.1018841.
    [7]
    JENSEN M T, FUNG K, AUNG N, et al. Changes in cardiac morphology and function in individuals with diabetes mellitus: The UK biobank cardiovascular magnetic resonance substudy[J]. Circulation. Cardiovascular Imaging, 2019, 12(9): e009476. DOI: 10.1161/CIRCIMAGING.119.009476.
    [8]
    YANG Q M, FANG J X, CHEN X Y, et al. The systolic and diastolic cardiac function of patients with type 2 diabetes mellitus: An evaluation of left ventricular strain and torsion using conventional and speckle tracking echocardiography[J]. Frontiers in Physiology, 2022, 12: 726719. DOI: 10.3389/fphys.2021.726719.
    [9]
    DZHIOEVA O, BELYAVSKIY E. Diagnosis and management of patients with heart failure with preserved ejection fraction (HFpEF): Current perspectives and recommendations[J]. Therapeutics and Clinical Risk Management, 2020, 16: 769−785. DOI: 10.2147/TCRM.S207117.
    [10]
    JANKAUSKAS S S, KANSAKAR U, VARZIDEH F, et al. Heart failure in diabetes[J]. Metabolism: Clinical and Experimental, 2021, 125: 154910. DOI: 10.1016/j.metabol.2021.154910.
    [11]
    RITCHIE R H, ABEL E D. Basic mechanisms of diabetic heart disease[J]. Circulation Research, 2020, 126(11): 1501−1525. DOI: 10.1161/CIRCRESAHA.120.315913.
    [12]
    OUYANG C, HUANG L, YE X, et al. HDAC1 promotes myocardial fibrosis in diabetic cardiomyopathy by inhibiting BMP-7 transcription through histone deacetylation[J]. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 2022, 130(10): 660−670. DOI: 10.1055/a-1780-8768.
    [13]
    WANG L, ZHAO D, TANG L, et al. Soluble epoxide hydrolase deficiency attenuates lipotoxic cardiomyopathy via upregulation of AMPK-mTORC mediated autophagy[J]. Journal of Molecular and Cellular Cardiology, 2021, 154: 80−91. DOI: 10.1016/j.yjmcc.2020.12.013.
    [14]
    HE J, SIRAJUDDIN A, LI S, et al. Heart failure with preserved ejection fraction in hypertension patients: A myocardial MR strain study[J]. Journal of Magnetic Resonance Imaging, 2021, 53(2): 527−539. DOI: 10.1002/jmri.27313.
    [15]
    SHAO G, CAO Y, CUI Y, et al. Multiparametric CMR imaging of myocardial structure and function changes in diabetic mini-pigs with preserved LV function: A preliminary study[J]. BMC Cardiovasc Disord, 2022, 22(1): 143. DOI: 10.1186/s12872-022-02597-7.
    [16]
    ZHOU S, ZHANG Z, ZHANG Z, et al. Evaluation of left ventricular systolic and diastolic function in subjects with prediabetes and diabetes using cardiovascular magnetic resonance-feature tracking[J]. Acta Diabetologica, 2022, 59(4): 491−499. DOI: 10.1007/s00592-021-01822-7.
    [17]
    XIE L J, DONG Z H, YANG Z G, et al. Assessment of left ventricular deformation in patients with type 2 diabetes mellitus by cardiac magnetic resonance tissue tracking[J]. Scientific Reports, 2020, 10(1): 13126. DOI: 10.1038/s41598-020-69977-x.
    [18]
    CHEN Q, GAN Y, LI Z Y. Left ventricular diastolic dysfunction in type 2 diabetes patients: A novel 2D strain analysis based on cardiac magnetic resonance imaging[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19(12): 1330−1338. DOI: 10.1080/10255842.2016.1139093.
    [19]
    REINDL M, TILLER C, HOLZKNECHT M, et al. Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction[J]. Clinical research in Cardiology: Official Journal of the German Cardiac Society, 2021, 110(1): 61−71. DOI: 10.1007/s00392-020-01649-2.
    [20]
    KELLMAN P, HANSEN M S. T1-mapping in the heart: Accuracy and precision[J]. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance, 2014, 16(1): 2. DOI: 10.1186/1532-429X-16-2.
    [21]
    ROBINSON A A, CHOW K, SALERNO M. Myocardial T1 and ECV measurement: Underlying concepts and technical considerations[J]. JACC: Cardiovascular Imaging, 2019, 12(11 Pt2): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
    [22]
    CAO Y, ZENG W, CUI Y, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain[J]. Cardiovascular Diabetology, 2018, 17(1): 7. DOI: 10.1186/s12933-017-0651-2.
    [23]
    ZHANG Y, ZENG W, CHEN W, et al. MR extracellular volume mapping and non-contrast T1ρ mapping allow early detection of myocardial fibrosis in diabetic monkeys[J]. European Radiology, 2019, 29(6): 3006−3016. DOI: 10.1007/s00330-018-5950-9.
    [24]
    ZHANG H, SHI C, YANG L, et al. Quantification of early diffuse myocardial fibrosis through 7.0T cardiac magnetic resonance T1 mapping in a type 1 diabetic mellitus mouse model[J]. Journal of Magnetic Resonance Imaging, 2023, 57(1): 167−177. DOI: 10.1002/jmri.28207.
    [25]
    LEVELT E, RODGERS C T, CLARKE W T, et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus[J]. European Heart Journal, 2016, 37(46): 3461−3469. DOI: 10.1093/eurheartj/ehv442.
    [26]
    VEITCH S, NJOCK M S, CHANDY M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes[J]. Cardiovascular Diabetology, 2022, 21(1): 31. DOI: 10.1186/s12933-022-01458-z.
    [27]
    JIANG L, SHI K, GUO Y K, et al. The additive effects of obesity on myocardial microcirculation in diabetic individuals: A cardiac magnetic resonance first-pass perfusion study[J]. Cardiovascular Diabetology, 2020, 19(1): 52. DOI: 10.1186/s12933-020-01028-1.
    [28]
    NG M Y, ZHOU W, VARDHANABHUTI V, et al. Cardiac magnetic resonance for asymptomatic patients with type 2 diabetes and cardiovascular high risk (CATCH): A pilot study[J]. Cardiovascular Diabetology, 2020, 19(1): 42. DOI: 10.1186/s12933-020-01019-2.
    [29]
    RIJZEWIJK L J, Van der MEER R W, SMIT J W A, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus[J]. Journal of the American College of Cardiology, 2008, 52(22): 1793−1799. DOI: 10.1016/j.jacc.2008.07.062.
    [30]
    ABDURRACHIM D, PROMPERS J J. Evaluation of cardiac energetics by non-invasive 31P magnetic resonance spectroscopy[J]. BBA-Molecular Basis of Disease, 2018, 1864(5 Pt B): 1939-1948. DOI: 10.1016/j.bbadis.2017.11.013.
    [31]
    GAO Y, REN Y, GUO Y K, et al. Metabolic syndrome and myocardium steatosis in subclinical type 2 diabetes mellitus: A 1 H-magnetic resonance spectroscopy study[J]. Cardiovascular Diabetology, 2020, 19(1): 70. DOI: 10.1186/s12933-020-01044-1.
    [32]
    RODRÍGUEZ-CALVO R, GIRONA J, RODRÍGUEZ M, et al. Fatty acid binding protein 4 (FABP4) as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes[J]. Metabolism, 2019, 96: 12−21. DOI: 10.1016/j.metabol.2019.04.007.
    [33]
    DONG X, STRUDWICK M, WANG W Y, et al. Impact of body mass index and diabetes on myocardial fat content, interstitial fibrosis and function[J]. The International Journal of Cardiovascular Imaging, 2023, 39(2): 379−390. DOI: 10.1007/s10554-022-02723-8.
    [34]
    SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction[J]. IEEE Transactions on Medical Imaging, 2018, 37(2): 491−503. DOI: 10.1109/TMI.2017.2760978.
    [35]
    BAI W J, MATTHEW S, GIACOMO T, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance, 2018, 20(1): 65. DOI: 10.1186/s12968-018-0471-x.
    [36]
    BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514−2525. DOI: 10.1109/TMI.2018.2837502.
    [37]
    HAUPTMANN A, ARRIDGE S, LUCKA F, et al. Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease[J]. Magnetic Resonance in Medicine, 2019, 81(2): 1143−1156. DOI: 10.1002/mrm.27480.
    [38]
    RUIJSINK B, PUYOL-ANTÓN E, OKSUZ I, et al. Fully Automated, quality-controlled cardiac analysis from CMR: Validation and large-scale application to characterize cardiac function[J]. JACC: Cardiovascular Imaging, 2020, 13(3): 684−695. DOI: 10.1016/j.jcmg.2019.05.030.
    [39]
    DAWES T J W, de MARVAO A, SHI W, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: A cardiac MR imaging study[J]. Radiology, 2017, 283(2): 381−390. DOI: 10.1148/radiol.2016161315.

Catalog

    Article views (161) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return