ISSN 1004-4140
CN 11-3017/P
YAN Q W, WANG Y X, ZHANG J, et al. Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms[J]. CT Theory and Applications, 2024, 33(2): 182-188. DOI: 10.15953/j.ctta.2023.035. (in Chinese).
Citation: YAN Q W, WANG Y X, ZHANG J, et al. Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms[J]. CT Theory and Applications, 2024, 33(2): 182-188. DOI: 10.15953/j.ctta.2023.035. (in Chinese).

Clinical Value of Spectral Imaging Combined with MAR for CTA after Embolization of Intracranial Aneurysms

More Information
  • Received Date: March 02, 2023
  • Revised Date: April 05, 2023
  • Accepted Date: May 21, 2023
  • Available Online: September 11, 2023
  • Objective: To evaluate the application value of combining spectral imaging and metal artifact reduction (MAR) in head and neck CTA after the embolization of intracranial aneurysms. Methods: We collected 37 patients who experienced embolization of intracranial aneurysms then received spectral imaging of head and neck CTA. Monochromatic images with energy ranging from 70~140 keV, 120 kVp-like mixed energic images, 70~140 keV MAR images, and 120 kVp-like MAR images were generated. The region of interest was placed on the area near the coil and with the most serious metal artifact. CT attenuation and standard deviation were measured, and artifact index (AI) and signal-noise ratio (SNR) were calculated. Two radiologists independently subjectively evaluated the metal artifact and the display of surrounding vessels using Likert 5 scales. The subjective scores and objective parameters between MAR and non-MAR images were compared. The Wilcoxon ranking test, paired sample t test, and independent sample t test were utilized to compare parameters between the groups. Results: MAR images had significantly lower AI than did non-MAR images for all eight monochromatic energies. When energies ranged from 80~110 keV, SNR was higher for MAR images than for non-MAR images, and the difference was statistically significant. With same energies, MAR images had higher artifact and vessel display scores than did non-MAR images. For non-MAR images, the different coil diameters did not make a statistical difference in AI and vessel display scores. For MAR images, a larger coil diameter (>8.79 mm) led to higher AI and lower vessel display scores than did normal diameters (≤8.79 mm). Conclusion: The combination of spectral imaging and MAR could effectively reduce the metal artifact of implants for the embolization of intracranial aneurysms and improve the surrounding vessel display. Moreover, the metal artifact reduction effect was more significant for the coils with smaller diameters.

  • [1]
    GOERTZ L, LIEBIG T, PENNIG L, et al. Propensity score-adjusted analysis on stent-assisted coiling versus coiling alone for ruptured intracranial aneurysms[J]. Scientific Reports, 2021, 11(1): 21742. doi: 10.1038/s41598-021-01156-y
    [2]
    YU A Y, ZERNA C, ASSIS Z, et al. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion[J]. Neurology, 2016, 87(6): 609−616.
    [3]
    李杰, 袁源, 陈永明, 等. MAR技术去除脊柱金属物伪影的临床应用研究[J]. 临床放射学杂志, 2020,39(6): 1180−1184.

    LI J, YUAN Y, CHEN Y M, et al. Clinical application of MAR technique in removing metal artifacts in the spine[J]. Journal of Clinical Radiology, 2020, 39(6): 1180−1184. (in Chinese).
    [4]
    YU L, PRIMAK A N, LIU X, et al. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT[J]. Medical Physics, 2009, 36(3): 1019−1024. doi: 10.1118/1.3077921
    [5]
    de MAN B, NUYTS J, DUPONT P, et al. Metal streak artifacts in X-ray computed tomography: A simulation study[J]. IEEE Transactions on Nuclear Science, 1999, 46(3): 691−696. doi: 10.1109/23.775600
    [6]
    MAMOURIAN A C, PLUTA D J, ESKEY C J, et al. Optimizing computed tomography to reduce artifacts from titanium aneurysm clips: An in vitro study[J]. Journal of Neurosurgery, 2007, 107(6): 1238−1243. doi: 10.3171/JNS-07/12/1238
    [7]
    HOSOI R, YASAKA K, MIZUKI M, et al. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses[J]. Japanese Journal of Radiology, 2023, 41: 863−871.
    [8]
    YAZDI M, GINGRAS L, BEAULIEU L. An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: Experimental and clinical studies[J]. International Journal of Radiation Oncology Biology Physics, 2005, 62(4): 1224−1231. doi: 10.1016/j.ijrobp.2005.02.052
    [9]
    ANDERSSON K M, NOWIK P, PERSLIDEN J, et al. Metal artefact reduction in CT imaging of hip prostheses: An evaluation of commercial techniques provided by four vendors[J]. British Journal of Radiology, 2015, 88(1052): 20140473. doi: 10.1259/bjr.20140473
    [10]
    MELLANDER H, FRANSSON V, YDSTROM K, et al. Metal artifact reduction by virtual monoenergetic reconstructions from spectral brain CT[J]. European Journal of Radiology Open, 2023, 10: 100479. doi: 10.1016/j.ejro.2023.100479
    [11]
    ZOPFS D, LENNARTZ S, PENNIG L, et al. Virtual monoenergetic images and post-processing algorithms effectively reduce CT artifacts from intracranial aneurysm treatment[J]. Scientific Reports, 2020, 10(1): 1−10. doi: 10.1038/s41598-019-56847-4
    [12]
    WINKLHOFER S, HINZPETER R, STOCKER D, et al. Combining monoenergetic extrapolations from dual-energy CT with iterative reconstructions: Reduction of coil and clip artifacts from intracranial aneurysm therapy[J]. Neuroradiology, 2018, 60(3): 281−291. doi: 10.1007/s00234-018-1981-9
    [13]
    李杰, 袁源, 王春杰, 等. 能谱CT去金属伪影(MAR)技术用于减低单髋关节置换物伪影[J]. 中国医学影像技术, 2021,37(1): 131−135.

    LI J, YUAN Y, WANG C J, et al. Energy spectrum CT metal artifacts reduction (MAR) for reducing artifacts of unilateral hip arthroplasty[J]. Chinese Medical Imaging Technology, 2021, 37(1): 131−135. (in Chinese).
    [14]
    付雨菲, 王弘, 邱晓明, 等. 双能量CT单能谱成像技术在颅内动脉瘤夹闭术后的应用[J]. 临床放射学杂志, 2015,5(34): 813−817.

    FU Y F, WANG H, QIU X M, et al. Application of dual energy monoenergetic CT technique in the evaluation of clipped intracranial aneurysms[J]. Journal of Clinical Radiology, 2015, 5(34): 813−817. (in Chinese).
    [15]
    PESSIS E, CAMPAGNA R, SVERZUT J M, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: Reduction of metal artifacts at CT[J]. Radiographics, 2013, 33(2): 573−583. doi: 10.1148/rg.332125124
    [16]
    FERNANDEZ D M, ARMENTIA E S, FIORE A B, et al. The utility of dual-energy CT for metal artifact reduction from intracranial clipping and coiling[J]. Radiologia, 2018, 60(4): 312−319. doi: 10.1016/j.rx.2018.02.009
    [17]
    赵艳娥, 宁辉, 郑玲, 等. 双能量CT虚拟单能谱成像技术在脑动脉瘤夹闭术后评估中的应用[J]. 放射学实践, 2014,(9): 988−992.

    ZHAO Y E, NING H, ZHENG L, et al. The application of monoenergetic imaging in postoperative evaluation of the patients with intracranial aneurysm clipping using dual energy CT angiography[J]. Radiology Practice, 2014, (9): 988−992. (in Chinese).
    [18]
    潘雪琳, 李真林, 程巍, 等. 双源CT单能谱成像技术减低颅内动脉瘤夹伪影的研究[J]. 放射学实践, 2013,28(12): 1212−1215.

    PAN X L, LI Z L, CHENG W, et al. Optimal monoenergetic imaging for reducing titanium clip metal artifacts in dual-energy computed tomography angiography[J]. Radiology Practice, 2013, 28(12): 1212−1215. (in Chinese).
    [19]
    宁志光, 马国峰, 于远, 等. 宽体探测器CT多物质伪影降低技术对CT扫描图像质量的影响[J]. 中华放射学杂志, 2017, 51(10): 790-793.

    NING Z G, MA G F, YU Y, et al. The effect of a multi-material artifact reduction algorithm in a wide-detector CT system to reduce the beam hardening artifacts in CT imaging[J], Chinese Journal of Radiology, 2017, 51(10): 790-793. (in Chinese).
    [20]
    DEBASHISH P, SHUQIN D, KAREN P, et al. Smart metal artifact reduction[J]. White Paper, GE Healthcare, 2016.
    [21]
    ZHENG H, YANG M, JIA Y, et al. A novel subtraction method to reduce metal artifacts of cerebral aneurysm embolism coils[J]. Clinical Neuroradiology, 2022, 32(3): 687-694.
    [22]
    ZHANG X, WANG J, XING L. Metal artifact reduction in X-ray computed tomography (CT) by constrained optimizatio[J]. Medical Physics, 2011, 38(2): 701−711. doi: 10.1118/1.3533711
    [23]
    BAL M, SPIES L. Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering[J]. Medical Physics, 2006, 33(8): 2852−2859. doi: 10.1118/1.2218062
    [24]
    WELLENBERG R, HAKVOORT E, SLUMP C, et al. Metal artifact reduction techniques in musculoskeletal CT-imaging[J]. European Journal of Radiology, 2018, 107: 60−69. doi: 10.1016/j.ejrad.2018.08.010

Catalog

    Article views (140) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return