ISSN 1004-4140
CN 11-3017/P
HE W H, FANG T S, FU X, et al. Risk Factors of Vulnerable Coronary Plaque Formation in Type 2 Diabetes[J]. CT Theory and Applications, 2023, 32(4): 523-529. DOI: 10.15953/j.ctta.2023.036. (in Chinese).
Citation: HE W H, FANG T S, FU X, et al. Risk Factors of Vulnerable Coronary Plaque Formation in Type 2 Diabetes[J]. CT Theory and Applications, 2023, 32(4): 523-529. DOI: 10.15953/j.ctta.2023.036. (in Chinese).

Risk Factors of Vulnerable Coronary Plaque Formation in Type 2 Diabetes

More Information
  • Received Date: March 04, 2023
  • Revised Date: April 14, 2023
  • Accepted Date: April 18, 2023
  • Available Online: June 01, 2023
  • Published Date: July 30, 2023
  • Objective: To explore the related factors of coronary vulnerable plaque in type 2 diabetes (T2DM) and to provide an important basis for clinical prediction and management of coronary vulnerable plaque in patients with T2DM. Methods: A retrospective analysis of 150 patients was performed using T2DM-related clinical indicators and coronary plaque CT angiography (CTA) data, and by the presence of vulnerable plaque groups, to explore the independent risk factors of coronary vulnerable plaque in patients with T2DM and related factors of the ROC curve analysis of its diagnostic efficacy. Results: TG was an independent risk factor for vulnerable plaque in T2DM cases (OR=1.49, 95% CI 1.02~2.18); TIR (OR=0.95, 95% CI 0.92~0.97) and HDL (OR=0.32, 95% CI 0.13~0.78) were independent protection factors. The AUC of TIR, TG, and HDL was 0.71, 0.69, and 0.65, respectively. The AUC for joint prediction was 0.76, 95% CI was 0.68~0.83, sensitivity was 75%, and specificity was 70%. Conclusions: When TIR and HDL decrease and TG increases in patients with T2DM, clinicians should be alert to the possibility of a coronary vulnerable plaque.
  • [1]
    中华医学会糖尿病学会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021,37(4): 311−398. doi: 10.3760/cma.j.cn115791-20210221-00095
    [2]
    SHAH A D, LANGENBERG C, RAPSOMANIKI E, et al. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people[J]. Lancet Diabetes & Endocrinology, 2015, 3(2): 105−113. DOI: 10.1016/S2213-8587(14)70219-0.
    [3]
    DAGHEM M, BING R, FAYAD Z A, et al. Noninvasive imaging to assess atherosclerotic plaque composition and disease activity: Coronary and carotid applications[J]. JACC-Cardiovascular Imaging, 2020, 13(4): 1055−1068. DOI: 10.1016/j.jcmg.2019.03.033.
    [4]
    HOFFMANN U, FERENCIK M, UDELSON J E, et al. Prognostic value of noninvasive cardiovascular testing in patients with stable chest pain: Insights from the PROMISE trial (prospective multicenter imaging study for evaluation of chest pain)[J]. Circulation, 2017, 135(24): 2320−2332. DOI: 10.1161/CIRCULATIONAHA.116.024360.
    [5]
    MADDOX T M, STANISLAWSKI M A, GRUNWALD G K, et al. Nonobstructive coronary artery disease and risk of myocardial infarction[J]. JAMA-Journal of the American Medical Association, 2014, 312(17): 1754−1763. DOI: 10.1001/jama.2014.14681.
    [6]
    TERASHIMA M, KANEDA H, SUZUKI T. The role of optical coherence tomography in coronary intervention[J]. The Korean Journal of Internal Medicine, 2012, 27(1): 1−12. DOI: 10.3904/kjim.2012.27.1.1.
    [7]
    de GRAAF M A, BROERSEN A, KITSLAAR P H, et al. Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: Cross-correlation with intravascular ultrasound virtual histology[J]. The International Journal of Cardiovascular Imaging, 2013, 29(5): 1177−1190. DOI: 10.1007/s10554-013-0194-x.
    [8]
    HALON D A, LAVI I, BARNETT-GRINESS O, et al. Plaque morphology as predictor of late plaque events in patients with asymptomatic type 2 diabetes: A long-term observational study[J]. JACC-Cardiovascular Imaging, 2019, 12(7 Pt 2): 1353-1363. DOI: 10.1016/j.jcmg.2018.02.025.
    [9]
    LU J, WANG C, SHEN Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: A prospective cohort study[J]. Diabetes Care, 2020, 44(2): 549−555. DOI: 10.2337/dc20-1862.
    [10]
    中国医师协会放射医师分会. 冠状动脉CT血管成像斑块分析和应用中国专家建议[J]. 中华放射学杂志, 2022,56(6): 595−607. doi: 10.3760/cma.j.cn112149-20211129-01055
    [11]
    赖添福, 邓君良, 陈湘光, 等. 糖尿病患者冠状动脉粥样硬化的CTA特征分析[J]. CT理论与应用研究, 2020,29(3): 347−353. DOI: 10.15953/j.1004-4140.2020.29.03.11.

    LAI T F, DENG J L, CHEN X G, et al. Analysis of CTA characterisation of coronary atherosclerosis with diabetes mellitus[J]. CT Theory and Applications, 2020, 29(3): 347−353. DOI: 10.15953/j.1004-4140.2020.29.03.11. (in Chinese).
    [12]
    ABDELRAHMAN K M, CHEN M Y, DEY A K, et al. Coronary computed tomography angiography from clinical uses to emerging technologies: JACC state-of-the-art review[J]. American College of Cardiology Foundation Washington D. C., 2020, 76(10): 1226−1243. DOI: 10.1016/J.JACC.2020.06.076.
    [13]
    曾智, 谭维萍, 吴霞, 等. Ⅱ型糖尿病患者合并冠心病的冠状动脉造影特点分析[J]. 西部医学, 2011,23(9): 1692−1694. DOI: 10.3969/j.issn.1672-3511.2011.09.027.

    ZENG Z, TAN W P, WU X, et al. AnaIysis of coronary angiography characters among patients with type 2 diabetes and coronary heart disease[J]. Medical Journal of West China, 2011, 23(9): 1692−1694. DOI: 10.3969/j.issn.1672-3511.2011.09.027. (in Chinese).
    [14]
    YAHAGI K, KOLODGIE F D, OTSUKA F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis[J]. Nature Reviews Cardiology, 2016, 13(2): 79−98. DOI: 10.1038/nrcardio.2015.164.
    [15]
    BURKE, A P, KOLODGIE, F D, ZIESKE, A, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: A postmortem study[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2004, 24(7): 1266−1271. DOI: org/10.1161/01.ATV.0000131783.74034.97.
    [16]
    李雯, 陈海冰. 葡萄糖在目标范围内时间的研究进展[J]. 中国糖尿病杂志, 2021,29(2): 141−144. DOI: 10.3969/j.issn.1006-6187.2021.02.013.

    LI W, CHEN H B. The research progress of glucose time in range[J]. Chinese Journal of Diabetes, 2021, 29(2): 141−144. DOI: 10.3969/j.issn.1006-6187.2021.02.013. (in Chinese).
    [17]
    RODBARD D. Glucose time in range, time above range, and time below range depend on mean or median glucose or hba1c, glucose coefficient of variation, and shape of the glucose distribution[J]. Diabetes Technology & Therapeutics, 2020, 22(7): 492−500. DOI: 10.1089/dia.2019.0440.
    [18]
    李佳, 鄢华, 苏晞. 糖尿病血脂异常的药物治疗新进展[J]. 中国循证心血管医学杂志, 2022,14(2): 247−249. doi: 10.3969/j.issn.1674-4055.2022.02.32
    [19]
    RIDKER P M, EVERETT B M, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. New England Journal of Medicine, 2017, 377(12): 1119−1131. DOI: 10.1056/NEJMoa1707914.
    [20]
    王涛, 浦艳华, 殷洁, 等. 易损斑块与急性冠脉综合征[J]. 心血管病学进展, 2007,28(2): 246−248. DOI: 10.3969/j.issn.1004-3934.2007.02.039.

    WANG T, PU Y H, YING J, et al. Vulnerable plaque and acute coronary syndrome[J]. Advances in Cardiovascular Diseases, 2007, 28(2): 246−248. DOI: 10.3969/j.issn.1004-3934.2007.02.039. (in Chinese).
    [21]
    刘锼, 李阳, 樊泽元, 等. 冠心病患者血清MMP-8和MMP-9水平与冠脉易损斑块关系的研究[J]. 心血管康复医学杂志, 2016,25(5): 483−487. DOI: 10.3969/j.issn.1008-0074.2016.05.09.

    LIU T, LI Y, FAN Z Y, et al. Relationship among serum MMP-8, MMP-9 levels and coronary vulnerable plaques in patients with coronary heart disease[J]. Chinese Journal of Cardiovascular Rehabilitation Medicine, 2016, 25(5): 483−487. DOI: 10.3969/j.issn.1008-0074.2016.05.09. (in Chinese).
    [22]
    JIANG, Y, PANG, T, SHI, R, et al. Effect of smoking on coronary artery plaques in type 2 diabetes mellitus: Evaluation with coronary computed tomography angiography[J]. Frontiers in Endocrinology, 2021, 12(11): 750−773. DOI: 10.3389/fendo.2021.750773.

Catalog

    Article views (200) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return