Citation: | ZHAO J H, LIANG D Y, LYU G X, et al. Analysis of Prognosis of Coronavirus Disease 2019 Using Quantitative Measurement of Deep Learning[J]. CT Theory and Applications, 2023, 32(5): 587-594. DOI: 10.15953/j.ctta.2023.044. (in Chinese). |
[1] |
中华人民共和国国家卫生健康委员会. 关于印发对新型冠状病毒感染实施“乙类乙管”总体方案的通知 [EB/OL]. (2022-12-26)[2023-01-05]. http://www.nhc.gov.cn/xcs/zhengcwj/202212/e97e4c449d7a475794624b8ea12123c6.shtml.
|
[2] |
中华医学会放射学分会. 新型冠状病毒肺炎的放射学诊断: 中华医学会放射学分会专家推荐意见(第一版)[J]. 中华放射学杂志, 2020,54: E001−E001. DOI: 10.3760/cma.j.issn.1005-1201.2020.0001.
Chinese Society of Radiology. Radiological diagnosis of new coronavirus infected pneumonitis: Expert recommendation from the Chinese Society of Radiology (First edition)[J]. Chinese Journal of Radiology, 2020, 54: E001−E001. DOI: 10.3760/cma.j.issn.1005-1201.2020.0001. (in Chinese).
|
[3] |
孙莹, 李玲, 刘晓燕, 等. 早期新型冠状病毒肺炎的胸部薄层平扫CT表现特征[J]. CT理论与应用研究, 2023,32(1): 131−138. DOI: 10.15953/j.ctta.2023.006.
SUN Y, LI L, LIU X Y, et al. Imaging features of early COVID-19 on chest thin-slice non-enhanced CT[J]. CT Theory and Applications, 2023, 32(1): 131−138. DOI: 10.15953/j.ctta.2023.006. (in Chinese).
|
[4] |
中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[EB/OL]. (2023-01-06)[2023-01-20]. http://www.nhc.gov.cn/ylyjs/pqt/202301/32de5b2ff9bf4eaa88e75bdf7223a65a.shtml.
|
[5] |
LI Q, GUAN X, WU P, et al. Early transmission dynamics in Wuhan, china, of novel coronavirus infected pneumonia[J]. The New England Journal of Medicine, 2020, 382(13): 1199−1207. DOI: 10.1056/NEJMoa2001316.
|
[6] |
MUNSTER V J, KOOPMANS M, VAN D N, et al. A novel coronavirus emerging in China-key questions for impact assessment[J]. The New England Journal of Medicine, 2020, 382(8): 692−694. DOI: 10.1056/NEJMp2000929.
|
[7] |
靳英辉, 蔡林, 程真顺, 等. 新型冠状病毒 (2019-nCoV) 感染的肺炎诊疗快速建议指南(标准版)[J]. 解放军医学杂志, 2020,45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01.
JIN Y H, CAI L, CHENG Z S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (Standard version)[J]. Medical Journal of Chinese People's Liberation Army, 2020, 45(1): 1−20. DOI: 10.11855/j.issn.0577-7402.2020.01.01. (in Chinese).
|
[8] |
KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122−1131. DOI: 10.1016/j.cell.2018.02.010.
|
[9] |
CHEN J, WU L L, ZHANG J, et al. Deep learning-based model for detecting 2019 novel coronaviruspneumonia on high-resolution computed tomography[J]. Scientificreports, 2020, 10(1): 1−11. DOI: 10.1038/s41598-020-76282-0.
|
[10] |
YANG S, JIANG L, CAO Z, et al. Deep learning for detecting corona virus disease 2019 (COVID-19) on high resolution computed tomography: A pilot study[J]. Annals of Translational Medicine, 2020, 8(7): 450. DOI: 10.21037/atm.2020.03.132.
|
[11] |
WANG R, JIAO Z, YANG L, et al. Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data[J]. European Radiology, 2022, 32(1): 205−212. DOI: 10.1007/s00330-021-08049-8.
|
[12] |
NICHOLLS J M, POON L L, LEE K C, et al. Lung pathology of severe acute respiratory syndrome[J]. Lancet, 2003, 361(9371): 1773−1778. DOI: 10.1016/s0140-6736(03)13413-7.
|
[13] |
HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497−506. DOI: 10.1016/S0140-6736(20)30183-5.
|
[14] |
黄益龙, 张振光, 李翔, 等. CT影像组学联合征象鉴别新型冠状病毒肺炎与其他病毒性肺炎的价值[J]. 中华放射学杂志, 2022,56(1): 36−42. DOI: 10.3760/cma.j.cn112149-20201220-01318.
HUANG Y L, ZHANG Z G, LI X, et al. The value of CT signs combined with radiomics in the differentiation of COVID-19 from other viral pneumonias[J]. Chinese Journal of Radiology, 2022, 56(1): 36−42. DOI: 10.3760/cma.j.cn112149-20201220-01318. (in Chinese).
|
[15] |
赵小二, 邓克学, 王朋. 不同阶段新型冠状病毒肺炎的CT影像演变分析[J]. 实用放射学杂志, 2021,37(8): 1254−1257. doi: 10.3969/j.issn.1002-1671.2021.08.008
ZHAO X E, DENG K X, WANG P. Analysis of the CT manifestations changes of COVID-19 at different stages[J]. Journal of Practical Radiology, 2021, 37(8): 1254−1257. (in Chinese). doi: 10.3969/j.issn.1002-1671.2021.08.008
|
[16] |
吴杰, 肖安岭, 顾金凤. 多层螺旋CT对新型冠状病毒肺炎的临床诊断价值[J]. 实用放射学杂志, 2021,37(5): 746−748. DOI: 10.3969/j.issn.1002-1671.2021.05.013.
WU J, XIAO A L, GU J F. Clinical value of MSCT in the diagnosis of COVID-19[J]. Journal of Practical Radiology, 2021, 37(5): 746−748. DOI: 10.3969/j.issn.1002-1671.2021.05.013. (in Chinese).
|
[17] |
余成成, 杨彦鸿, 胡天丽, 等. 新型冠状病毒B.1.617.2变异株感染者高分辨率CT与临床特点[J]. 中华放射学杂志, 2021,55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574.
YU C C, YANG Y H, HU T L, et al. High resolution CT findings and clinical features of the novel corona-virus B.1.617.2 variant[J]. Chinese Journal of Radiology, 2021, 55(10): 1054−1058. DOI: 10.3760/cma.j.cn112149-20210618-00574. (in Chinese).
|
[18] |
赵建华, 柴军, 张晓琴, 等. 基于深度学习的新型冠状病毒肺炎转归胸部CT评价[J]. 国际放射医学核医学杂志, 2020,44(12): 737−743. DOI: 10.3760/cma.j.cn121381-202004048-00101.
ZHAO J H, CHAI J, ZHANG X Q, et al. Chest CT evaluation of COVID-19 outcome based on deep learning[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2020, 44(12): 737−743. DOI: 10.3760/cma.j.cn121381-202004048-00101. (in Chinese).
|
[19] |
谢正平, 戴峰, 蒋燕, 等. 重症甲型H1N1流感急性肺损伤的高分辨率CT影像学分析[J]. 现代医学, 2012,40(3): 276−280. doi: 10.3969/j.issn.1671-7562.2012.03.007
XIE Z P, DAI F, JIANG Y, et al. HRCT imaging analysis of influenza a H1N1 complicated with severe lung injury[J]. Modern Medical Journal, 2012, 40(3): 276−280. (in Chinese). doi: 10.3969/j.issn.1671-7562.2012.03.007
|
[20] |
刘玉建, 仲建全, 冯浩, 等. 新型冠状病毒肺炎患者的高分辨率CT影像学特征[J]. 医疗装备, 2022,35(11): 1−4. doi: 10.3969/j.issn.1002-2376.2022.11.001
LIU Y J, ZHONG J Q, FENG H, et al. Imaging characteristics of high resolution CT for patients with corona virus disease 2019[J]. Medical Equipment, 2022, 35(11): 1−4. (in Chinese). doi: 10.3969/j.issn.1002-2376.2022.11.001
|