Citation: | LI J, WANG F R, CHAI J, et al. Analysis of Risk Factors of Pneumonia Caused by Thee Novel Coronavirus[J]. CT Theory and Applications, 2023, 32(3): 419-427. DOI: 10.15953/j.ctta.2023.057. (in Chinese). |
[1] |
ZHOU F, YU T, DU R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study[J]. Lancet, 2020, 395(10229): 1054−1062. doi: 10.1016/S0140-6736(20)30566-3
|
[2] |
ALEEM A, AKBAR SAMAD A B, SLENKER A K. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19)[M]. StatPearls. Treasure Island (FL); StatPearls Publishing Copyright 2022, StatPearls Publishing LLC. 2022.
|
[3] |
葛玲玲, 董旭, 王歆妤, 等. 奥密克戎BA.2变异株感染者不同部位样本核酸阴转时间及影响因素分析[J]. 海军军医大学学报, 2022,43(11): 1240−1246.
|
[4] |
ZHANG H, CHEN W, YE X, et al. Clinical characteristics of patients infected with novel coronavirus wild strain, Delta variant strain and Omicron variant strain in Quanzhou: A real‑world study[J]. Experimental and Therapeutic Medicine, 2023, 25(1): 62.
|
[5] |
CALLAWAY E. What Omicron's BA.4 and BA.5 variants mean for the pandemic[J]. Nature, 2022, 606(7916): 848−849. doi: 10.1038/d41586-022-01730-y
|
[6] |
BRüSSOW H. COVID-19: Omicron-the latest, the least virulent, but probably not the last variant of concern of SARS-CoV-2[J]. Microbial Biotechnology, 2022, 15(7): 1927−1939. doi: 10.1111/1751-7915.14064
|
[7] |
CHATTERJEE S, BHATTACHARYA M, NAG S, et al. A detailed overview of SARS-CoV-2 Omicron: Its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies[J]. Viruses, 2023, 15(1).
|
[8] |
YING W F, CHEN Q, JIANG Z K, et al. Chest computed tomography findings of the Omicron variants of SARS-CoV-2 with different cycle threshold values[J]. World Journal of Clinical Cases, 2023, 11(4): 756−763. doi: 10.12998/wjcc.v11.i4.756
|
[9] |
SHA J, MENG C, SUN J, et al. Clinical and upper airway characteristics of 3715 patients with the Omicron variant of SARS-Cov-2 in Changchun, China[J]. Journal of Infection and Public Health, 2023, 16(3): 422−429. doi: 10.1016/j.jiph.2023.01.013
|
[10] |
中华人民共和国国家卫生健康委员会办公厅, 中华人民共和国国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版)[J]. 中国医药, 2022,17(4): 481−487.
|
[11] |
FLOOK M, JACKSON C, VASILEIOU E, et al. Informing the public health response to COVID-19: A systematic review of risk factors for disease, severity, and mortality[J]. BMC Infectious Diseases, 2021, 21(1): 342. doi: 10.1186/s12879-021-05992-1
|
[12] |
SHAW A C, JOSHI S, GREENWOOD H, et al. Aging of the innate immune system[J]. Current Opinion in Immunology, 2010, 22(4): 507−513. doi: 10.1016/j.coi.2010.05.003
|
[13] |
GAO Y D, DING M, DONG X, et al. Risk factors for severe and critically ill COVID-19 patients: A review[J]. Allergy, 2021, 76(2): 428−455. doi: 10.1111/all.14657
|
[14] |
BREZNIK J A, RAHIM A, KAJAKS T, et al. Protection from Omicron infection in residents of nursing and retirement homes in Ontario, Canada[J]. Journal of the American Medical Directors Association, 2023.
|
[15] |
WU J T, LEUNG K, BUSHMAN M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China[J]. Nature Medicine, 2020, 26(4): 506−510. doi: 10.1038/s41591-020-0822-7
|
[16] |
喻博识, 陈文娟, 陈小慧, 等. ACE2、TMPRSS2表达与小鼠COVID-19易感年龄及潜在靶器官关系的探讨[J]. 安徽医科大学学报, 2021,56(6): 986−990. doi: 10.19405/j.cnki.issn1000-1492.2021.06.030
YU B S, CHEN W J, CHEN X H, et al. Study on the relationship between the expression of ACE2 and TMPRSS2 and the susceptible age and potential target organs of COVID-19 in mice[J]. Acta Universitatis Medicinalis Anhui, 2021, 56(6): 986−990. (in Chinese). doi: 10.19405/j.cnki.issn1000-1492.2021.06.030
|
[17] |
WANG M, MI H, LI N, et al. Association between the overall burden of comorbidity and CT values among the older patients with Omicron infection: Mediated by inflammation[J]. Frontiers in Immunology, 2023, 14: 1145044. doi: 10.3389/fimmu.2023.1145044
|
[18] |
GUAN W J, LIANG W H, ZHAO Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis[J]. The European Respiratory Journal, 2020, 55(5): 2000547.
|
[19] |
IZZI-ENGBEAYA C, DISTASO W, AMIN A, et al. Adverse outcomes in COVID-19 and diabetes: A retrospective cohort study from three London teaching hospitals[J]. BMJ Open Diabetes Research & Care, 2021, 9(1): 001858.
|
[20] |
TSAMPASIAN V, ELGHAZALY H, CHATTOPADHYAY R, et al. Risk factors associated with post-COVID-19 condition: A systematic review and meta-analysis[J]. JAMA Internal Medicine, 2023: e230750.
|
[21] |
BASTARD P, ROSEN L B, ZHANG Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370(6515).
|
[22] |
TRIMBOLI P, CAMPONOVO C, SCAPPATICCIO L, et al. Thyroid sequelae of COVID-19: A systematic review of reviews[J]. Reviews in Endocrine & Metabolic Disorders, 2021, 22(2): 485−491.
|
[23] |
OU M, ZHU J, JI P, et al. Risk factors of severe cases with COVID-19: A meta-analysis[J]. Epidemiology and Infection, 2020, 148: e175. doi: 10.1017/S095026882000179X
|
[24] |
DU H, DONG X, ZHANG J J, et al. Clinical characteristics of 182 pediatric COVID-19 patients with different severities and allergic status[J]. Allergy, 2021, 76(2): 510−532. doi: 10.1111/all.14452
|
[25] |
FLOYD J S, WALKER R L, KUNTZ J L, et al. Association between diabetes severity and risks of COVID-19 infection and outcomes[J]. Journal of General Internal Medicine, 2023: 1−9.
|
[26] |
杨烨坤, 钱捷. 新型冠状病毒肺炎与类风湿关节炎的研究进展[J]. 实用临床医药杂志, 2021,25(23): 115−123.
|
[27] |
EL-SABER BATIHA G, AL-GAREEB A I, SAAD H M, et al. COVID-19 and corticosteroids: A narrative review[J]. Inflammopharmacology, 2022, 30(4): 1189−1205. doi: 10.1007/s10787-022-00987-z
|
[28] |
RAJPAL A, RAHIMI L, ISMAIL-BEIGI F. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes[J]. Journal of Diabetes, 2020, 12(12): 895−908. doi: 10.1111/1753-0407.13085
|
[29] |
HAYDEN M R. Endothelial activation and dysfunction in metabolic syndrome, type 2 diabetes and coronavirus disease 2019[J]. The Journal of International Medical Research, 2020, 48(7): 300060520939746.
|
[30] |
ABUMWEIS S, ALREFAI W, ALZOUGHOOL F. Association of obesity with COVID-19 diseases severity and mortality: A meta-analysis of studies[J]. Obesity Medicine, 2022, 33: 100431. doi: 10.1016/j.obmed.2022.100431
|
[31] |
KHAN M S, SHAHID I, ANKER S D, et al. Cardiovascular implications of COVID-19 versus influenza infection: A review[J]. BMC Medicine, 2020, 18(1): 403. doi: 10.1186/s12916-020-01816-2
|
[32] |
BRAR G, PINHEIRO L C, SHUSTERMAN M, et al. COVID-19 severity and outcomes in patients with cancer: A matched cohort study[J]. Journal of Clinical Oncology, 2020, 38(33): 3914−3924. doi: 10.1200/JCO.20.01580
|
[33] |
CHEN S, SUN H, HENG M, et al. Factors predicting progression to severe COVID-19: A competing risk survival analysis of 1753 patients in community isolation in Wuhan, China[J]. Engineering, 2022, 13: 99−106.
|
[34] |
SOKOLOWSKA M, LUKASIK Z M, AGACHE I, et al. Immunology of COVID-19: Mechanisms, clinical outcome, diagnostics, and perspectives: A report of the European Academy of Allergy and Clinical Immunology (EAACI)[J]. Allergy, 2020, 75(10): 2445−2476. doi: 10.1111/all.14462
|
[35] |
HENRY B M, de OLIVEIRA M H S, BENOIT S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis[J]. Clinical Chemistry and Laboratory Medicine, 2020, 58(7): 1021−1028. doi: 10.1515/cclm-2020-0369
|
[36] |
CHEN X, ZHAO B, QU Y, et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically ill patients with coronavirus disease 2019[J]. Clinical Infectious Diseases, 2020, 71(8): 1937−1942. doi: 10.1093/cid/ciaa449
|
[37] |
ZHANG J J, CAO Y Y, TAN G, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients[J]. Allergy, 2021, 76(2): 533−550. doi: 10.1111/all.14496
|
[38] |
AZKUR A K, AKDIS M, AZKUR D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19[J]. Allergy, 2020, 75(7): 1564−1581. doi: 10.1111/all.14364
|
[39] |
DANWANG C, ENDOMBA F T, NKECK J R, et al. A meta-analysis of potential biomarkers associated with severity of coronavirus disease 2019 (COVID-19)[J]. Biomarker Research, 2020, 8: 37. doi: 10.1186/s40364-020-00217-0
|
[40] |
YU Q, WANG Y, HUANG S, et al. Multicenter cohort study demonstrates more consolidation in upper lungs on initial CT increases the risk of adverse clinical outcome in COVID-19 patients[J]. Theranostics, 2020, 10(12): 5641−5648. doi: 10.7150/thno.46465
|
[41] |
AHMED J, RIZWAN T, MALIK F, et al. COVID-19 and liver injury: A systematic review and Meta-analysis[J]. Cureus, 2020, 12(7): e9424.
|
[42] |
KOVALIC A J, HUANG G, THULUVATH P J, et al. Elevated liver biochemistries in hospitalized Chinese patients with severe COVID-19: Systematic review and meta-analysis[J]. Hepatology (Baltimore, Md), 2021, 73(4): 1521−1530. doi: 10.1002/hep.31472
|
[43] |
YE L, CHEN B, WANG Y, et al. Prognostic value of liver biochemical parameters for COVID-19 mortality[J]. Annals of Hepatology, 2021, 21: 100279. doi: 10.1016/j.aohep.2020.10.007
|
[44] |
RAO S N, MANISSERO D, STEELE V R, et al. A systematic review of the clinical utility of cycle threshold values in the context of COVID-19[J]. Infectious Diseases and Therapy, 2020, 9(3): 573−586. doi: 10.1007/s40121-020-00324-3
|
[45] |
CAO S, GAN Y, WANG C, et al. Post-lockdown SARS-CoV-2 nucleic acid screening in nearly ten million residents of Wuhan, China[J]. Nature Communications, 2020, 11(1): 5917. doi: 10.1038/s41467-020-19802-w
|
1. |
张科,张春晓. 基于深度残差网络的儿科肺炎辅助诊断算法. 中国医疗设备. 2022(09): 42-46+56 .
![]() | |
2. |
周丽媛,赵启军,高定国. 基于注意力引导深度纹理特征学习的复杂背景藏药材切片图像识别. 世界科学技术-中医药现代化. 2022(12): 4825-4832 .
![]() |