ISSN 1004-4140
CN 11-3017/P
LIU Y F, KANG T L, ZHANG Y X, et al. Study of Two-stage Injection of Contrast Agent in Combination with Bolus Tracking Technique in Computed Tomography Pulmonary Angiography[J]. CT Theory and Applications, 2023, 32(4): 531-538. DOI: 10.15953/j.ctta.2023.075. (in Chinese).
Citation: LIU Y F, KANG T L, ZHANG Y X, et al. Study of Two-stage Injection of Contrast Agent in Combination with Bolus Tracking Technique in Computed Tomography Pulmonary Angiography[J]. CT Theory and Applications, 2023, 32(4): 531-538. DOI: 10.15953/j.ctta.2023.075. (in Chinese).

Study of Two-stage Injection of Contrast Agent in Combination with Bolus Tracking Technique in Computed Tomography Pulmonary Angiography

More Information
  • Received Date: March 22, 2023
  • Revised Date: April 18, 2023
  • Accepted Date: April 24, 2023
  • Available Online: May 30, 2023
  • Published Date: July 30, 2023
  • Objective: To investigate the utility of a two-stage injection of contrast agent combined with a bolus tracking technique in computed tomography (CT) pulmonary angiography. Methods: We recruited 30 patients undergoing CT pulmonary angiography due to suspected pulmonary embolism at Beijing Tongren Hospital affiliated to Capital Medical University from February to April 2022 as the experimental group, using a two-stage injection of contrast agent combined with bolus tracking technique. The region of interest (ROI) was placed in the pulmonary trunk with a threshold of 100HU. Contrast agent and normal saline injection sequence: (1) contrast agent 10 mL; (2) normal saline 30 mL; (3) contrast agent 20 mL; (4) normal saline 30 mL; the injection rate for all was 5 mL/s. The CT value of the pulmonary trunk was tracked, and scanning was delayed for 10 s after reaching the set threshold. Using the test bolus technique, we recruited 30 patients from January to December 2021 as the control group. First, 10 mL of contrast plus 30 mL of normal saline was injected to measure the peak time of the main pulmonary artery. Then, 20 mL of contrast plus 30 mL of normal saline was injected, and the peak time +1 s was used as the delay time for the scan. CT values were measured for the pulmonary artery, pulmonary vein, subclavian vein, and ascending aorta in both groups. Both groups scored the quality of the pulmonary artery images and the sclerotic artifacts of the superior vena cava. We compared the CT values of the vessels in the two groups using independent sample t-tests. We compared the pulmonary artery image quality scores and the sclerotic artifact scores of the superior vena cava using a non-parametric Mann–Whitney U-test. Results: CT values of the left pulmonary artery, right upper lobe artery, right middle lobe artery, right lower lobe artery, left upper lobe artery, and ascending aorta of the experimental group were higher than those of the control group, and the difference was statistically significant. There was no significant difference in the main pulmonary artery, right pulmonary artery, left inferior pulmonary artery, right upper pulmonary vein, right lower pulmonary vein, left upper pulmonary vein, left lower pulmonary vein, subclavian vein, right arteriovenous difference, and left arteriovenous difference between both groups. Also, there was no significant difference in pulmonary artery image quality scores between both groups, likewise in the sclerosis artifact score of superior vena cava sclerosis. Conclusions: The two-stage contrast agent injection with the bolus tracking technique for CT pulmonary angiography provides stable image quality with a simple and easy procedure. The transition delay time suits most CT devices and deserves a clinical generalization.
  • [1]
    中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组. 肺血栓栓塞症诊治与预防指南[J]. 中华医学杂志, 2018,98(14): 1060−1087. doi: 10.3760/cma.j.issn.0376-2491.2018.14.007
    [2]
    刘建新, 孙红霞, 唐光健, 等. 多层螺旋CT低剂量对比剂肺动脉成像[J]. 中国医学影像技术, 2006,22(7): 1012−1014. DOI: 10.3321/j.issn:1003-3289.2006.07.013.

    LIU J X, SUN H X, TANG G J, et al. Multi slice spiral CT pulmonary artery angiography with low dose contrast medium[J]. Chinese Journal of Medical Imaging Technology, 2006, 22(7): 1012−1014. DOI: 10.3321/j.issn:1003-3289.2006.07.013. (in Chinese).
    [3]
    张文明, 陈彬, 胡吉波, 等. 比较团注对比剂跟踪技术和小剂量团注测试技术在双能量CT肺灌注扫描中的应用[J]. 中华放射学杂志, 2013,47(10): 892−897. DOI: 10.3760/cma.j.issn.1005-1201.2013.10.006.

    ZHANG W M, CHEN B, HU J B, et al. Comparison of test bolus and bolus tracking techniques for dual-energy CT lung perfusion scan[J]. Chinese Journal of Radiology, 2013, 47(10): 892−897. DOI: 10.3760/cma.j.issn.1005-1201.2013.10.006. (in Chinese).
    [4]
    RODRIGUES J C L, MATHIAS H, NEGUS I S, et al. Intravenous contrast medium administration at 128 multidetector row CT pulmonary angiography: Bolus tracking versus test bolus and the implications for diagnostic quality and effective dose[J]. Clinical Radiology, 2012, 67(11): 1053−1060. DOI: 10.1016/j.crad.2012.02.010.
    [5]
    YU J, LIN S S, LU H, et al. Optimize scan timing in abdominal multiphase CT: Bolus tracking with an individualized post-trigger delay[J]. European Journal of Radiology, 2022, 148: 110139. DOI: 10.1016/j.ejrad.2021.110139.
    [6]
    CHIBA A, HARADA K, OHASHI Y, et al. Evaluation of computed tomography arterial portography scan timing using different bolus tracking methods[J]. Radiological Physics and Technology, 2020, 13(1): 92−97. DOI: 10.1007/s12194-020-00556-5.
    [7]
    HENZLER T, MEYER M, REICHERT M, et al. Dual-energy CT angiography of the lungs: Comparison of test bolus and bolus tracking techniques for the determination of scan delay[J]. European Journal of Radiology, 2012, 81(1): 132−138. DOI: 10.1016/j.ejrad.2010.06.023.
    [8]
    GOBLE E W, ABDULKARIM J A. CT pulmonary angiography using a reduced volume of high-concentration iodinated contrast medium and multiphasic injection to achieve dose reduction[J]. Clinical Radiology, 2014, 69(1): 36−40. DOI: 10.1016/j.crad.2013.07.023.
    [9]
    中华医学会放射学分会心胸学组. 急性肺血栓栓塞放射学检查技术方案与诊断共识[J]. 中华放射学杂志, 2012,46(12): 1066−1070. doi: 10.3760/cma.j.issn.1005-1201.2012.12.002
    [10]
    周运锋, 史河水, 吴爱兰, 等. 选择MSCT肺动脉血管成像触发点位置及后处理技术[J]. 中国医学影像技术, 2010,26(8): 1561−1564. DOI: 10.13929/j.1003-3289.2010.08.030.

    ZHOU Y F, SHI H S, WU A L, et al. Choice of triggering position and post-processing technique in multi-slice CT pulmonary angiography[J]. Chinese Journal of Medical Imaging Technology, 2010, 26(8): 1561−1564. DOI: 10.13929/j.1003-3289.2010.08.030. (in Chinese).
    [11]
    刘建新, 刘剑, 王霄英, 等. 对比剂智能跟踪与预试验肺动脉MSCT成像的对比研究[J]. 放射学实践, 2008,23(12): 1380−1382. DOI: 10.3969/j.issn.1000-0313.2008.12.025.

    LIU J X, LIU J, WANG X Y, et al. Multi-slice CT pulmonary arteriography: Comparison of bolus tracking with pretest time-density curve technique[J]. Radiologic Practice, 2008, 23(12): 1380−1382. DOI: 10.3969/j.issn.1000-0313.2008.12.025. (in Chinese).
    [12]
    崔晨, 刘建新, 王霄英, 等. 三期团注法对比剂注射方案在肺动脉CTA检查中的应用研究[J]. 放射学实践, 2013,28(5): 493−495. DOI: 10.13609/j.cnki.1000-0313.2013.05.005.

    CUI C, LIU J X, WANG X Y, et al. Application of optimized contrast agent injection in CT pulmonary angiography[J]. Radiologic Practice, 2013, 28(5): 493−495. DOI: 10.13609/j.cnki.1000-0313.2013.05.005. (in Chinese).
    [13]
    刘荣华, 徐宇崇, 万维佳. 64排CT多期双流混合注射跟踪法在肺动脉成像中的应用[J]. 放射学实践, 2014,29(12): 1478−1480. DOI: 10.13609/j.cnki.1000-0313.2014.12.034.

    LIU R H, XU Y C, WAN W J. Dual-flow multiphase injection technique with contrast medium-saline mixture for pulmonary angiography using 64-row multi-detector computed tomography[J]. Radiologic Practice, 2014, 29(12): 1478−1480. DOI: 10.13609/j.cnki.1000-0313.2014.12.034. (in Chinese).
    [14]
    DAS K, BISWAS S, ROUGHLEY S, et al. 3D CT cerebral angiography technique using a 320-detector machine with a time-density curve and low contrast medium volume: Comparison with fixed time delay technique[J]. Clinical Radiology, 2014, 69(3): e129−e135. DOI: 10.1016/j.crad.2013.10.021.
    [15]
    BISWAS S, CHANDRAN A, ROUGHLEY S, et al. Cerebral CT venography using a 320-MDCT scanner with a time-density curve technique and low volume of contrast agent: Comparison with fixed time-delay technique[J]. American Journal of Roentgenology, 2015, 205(6): 1269−1275. DOI: 10.2214/AJR.14.14200.
    [16]
    MORTIMER A M, SINGH R K, HUGHES J, et al. Use of expiratory CT pulmonary angiography to reduce inspiration and breath-hold associated artefact: Contrast dynamics and implications for scan protocol[J]. Clinical Radiology, 2011, 66(12): 1159−66. DOI: 10.1016/j.crad.2011.06.012.
    [17]
    RACZECK P, MINKO P, GRAEBER S, et al. Influence of respiratory position on contrast attenuation in pulmonary CT angiography: A prospective randomized clinical trial[J]. American Journal of Roentgenology, 2016, 206(3): 481−486. DOI: 10.2214/AJR.15.15176.
    [18]
    黄书然, 姜鑫, 王洪杰, 等. 平静呼吸轻屏气在改善肺动脉CT强化效果中的应用研究[J]. 放射学实践, 2022,37(2): 186−190. DOI: 10.13609/j.cnki.1000-0313.2022.02.009.

    HUANG S R, JIANG X, WANG H J, et al. The application of “breath holding at ease” in improving the CT enhancement effect of pulmonary artery[J]. Radiologic Practice, 2022, 37(2): 186−190. DOI: 10.13609/j.cnki.1000-0313.2022.02.009. (in Chinese).
  • Related Articles

    [1]WANG Yu, LIU Peng, WANG Yanan, QIAO Zhiwei. A Transformer-enhanced Iterative Unrolling Network for Sparse-view CT Image Reconstruction[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.044
    [2]LIU Bicheng, YI Xi, ZONG Chunguang, XU Yanwei, LI Liang. Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis[J]. CT Theory and Applications, 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153
    [3]LIU Yanting, ZHONG Chengcheng, JIANG Guoming, ZHAO Dapeng. Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka[J]. CT Theory and Applications, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223
    [4]CHEN Jian-lin, YAN Bin, LI Lei, XI Xiao-qi, WANG Lin-yuan. Reviews of the Model of Projection Matrix of CT Reconstruction Algorithm[J]. CT Theory and Applications, 2014, 23(2): 317-328.
    [5]XIA Jing-tao, WANG Qun-shu, LI Bin-kang, HEI Dong-wei, SHENG Liang, MA Ji-ming, WEI Fu-li, MA Ge. Simulation Study of Spherical Multilayer Object CT Reconstruction from Sparse Projection Data[J]. CT Theory and Applications, 2014, 23(2): 249-256.
    [6]WANG Chao, YAN Bin, LI Lei, ZENG Lei, LI Jian-xin. An Adaptive Regularization Iterative Reconstruction Algorithm on the Basis of a Sparse Constraint[J]. CT Theory and Applications, 2012, 21(4): 689-698.
    [7]LIANG Wen-xuan, HU Guang-shu. On the 2D Fan-beam CT Reconstruction from Insufficient Projection Data[J]. CT Theory and Applications, 2010, 19(3): 1-12.
    [8]DENG Jing-fei, LI Jian-xin, LI Lei, YAN Bin. Review of Accelerated CT Reconstruction Based on FPGA[J]. CT Theory and Applications, 2010, 19(2): 25-33.
    [9]XIE Dan-yan, JING Xi-li, REN Guo-chao. CT Reconstruction Algorithms with Sparse Radiographs Based on Bayes Estimates[J]. CT Theory and Applications, 2008, 17(4): 8-14.
    [10]LI Hua-xin. Conjugate Gradient Applied to Image Reconstruction[J]. CT Theory and Applications, 2007, 16(2): 31-35.

Catalog

    Article views (363) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return