Citation: | CHEN X N, HAN F X, GAO Z H, et al. Research Advancements in Surface Wave Exploration[J]. CT Theory and Applications, 2023, 32(6): 815-835. DOI: 10.15953/j.ctta.2023.089. (in Chinese). |
Surface wave exploration plays a vital role in obtaining target detection information by analyzing and retrieving the dispersion curve of surface waves. Although surface wave exploration technology originated in the 1960s, it has experienced significant advancements in recent decades and has found widespread applications in earthquake disaster and volcanic activity prediction, deep geological structure analysis, engineering construction, mining area and goaf assessment, subsidence area detection, and near-surface structure investigation, including celestial bodies such as stars. This paper aims to provide a comprehensive overview of surface wave exploration technology. It begins by discussing two types of data sources, namely active source and passive source, and proceeds to review the fundamental theory of surface wave exploration based on dispersion curve analysis and observations of horizontal and vertical amplitude ratios. This paper also provides a brief introduction to the surface wave inversion method. Additionally, it highlights the various application domains of surface wave exploration, outlines the current development trend, and presents future prospects for this technology.
[1] |
陈宏林, 丰继林. 工程地质勘察方法[M]. 北京: 地震出版社, 1998: 139-171.
CHEN H L, FENG J L. Engineering geological investigation method[M]. Beijing: Seismological Press, 1998: 139-171.
|
[2] |
NAZARIAN S, STOKOE K H. Evaluation of moduli and thicknesses of pavement systems by spectral-analysis-of-surface-waves method[R]. Centre for Transportation Research, 1983.
|
[3] |
PARK C B. Multi-channel analysis of surface waves using vibroseis (MASWV)[C]//1996 SEG Annual Meeting, 1996.
|
[4] |
NAKAMURA Y. Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute, 1989, 30(1): 25−33.
|
[5] |
DERODE A, LAROSE E, TANTER M, et al. Recovering the Green's function from field-field correlations in an open scattering medium[J]. The Journal of the Acoustical Society of America, 2003, 113(6): 2973−2976. doi: 10.1121/1.1570436
|
[6] |
CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Sciences, 2003, 299(5606): 547−549.
|
[7] |
HUTAPEA F L, TSUJI T, IKEDA T. Real-time crustal monitoring system of Japanese Islands based on spatio-temporal seismic velocity variation[J]. Earth Planets Space, 2020, 72(1): 1−16. doi: 10.1186/s40623-019-1127-2
|
[8] |
YANG Y J, RITZWOLLER M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. G-Cubed: Geochemistry, Geophysics, Geosystems, 2008, 9(2): Q02008.
|
[9] |
LONGUET-HIGGINS M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1950, 243(243): 1−35.
|
[10] |
XIA J, MILLER R D, PARK C B, et al. Utilization of high-frequency Rayleigh waves in near-surface geophysics[J]. Leading Edge (Tulsa, OK), 2004, 23(8): 753−759. doi: 10.1190/1.1786895
|
[11] |
李欣欣. 面波成像技术[M]. 北京: 中国石化出版社出版社, 2019.
LI X X. Surface wave imaging technology[M]. Beijing: China Petrochemical Press, 2019.
|
[12] |
HILDEBRAND J A. Anthropogenic and natural sources of ambient noise in the ocean[J]. Marine Ecology Progress, 2009, 395: 5−20. DOI: 10.3354/meps08353.
|
[13] |
OKADA H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Exploration Geophysics, 2006, 37(1): 73−85. doi: 10.1071/EG06073
|
[14] |
CHO I, TADA T, SHINOZAKI Y. A new method to determine phase velocities of Rayleigh waves from microseisms[J]. Geophysics, 2004, 69(6): 1535−1551. doi: 10.1190/1.1836827
|
[15] |
王建楠. 背景噪音提取高阶频散曲线的矢量波数变换方法[D]. 合肥: 中国科学技术大学, 2019.
WANG J N. A vector wavenumber transforms method for background noise extraction of high-order dispersion curves[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).
|
[16] |
PARK C B, MILLER R D, RYDEN N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(3): 323−334. doi: 10.2113/JEEG10.3.323
|
[17] |
XIA J H, XU Y X, MILLER R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5): 941−956. doi: 10.1007/s00024-007-0204-9
|
[18] |
CAPON J, M. I. T. LINCOLN LABORATORY L, MASS. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408−1418. doi: 10.1109/PROC.1969.7278
|
[19] |
AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin, Earthquake Research Institute, 1957, 35: 415−456.
|
[20] |
CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264. doi: 10.1190/1.1439927
|
[21] |
WANG J N, WU G X, CHEN X F. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708−3723. doi: 10.1029/2018JB016595
|
[22] |
YOUNG C N. Automation in ambient vibration analysis for soil characterisation[D]. Sydney: University of Western Sydney, 2014.
|
[23] |
BOORE D M, BROWN L T. Comparing shear-wave velocity profiles from inversion of surface-wave phase velocities with downhole measurements: Systematic differences between the CXW method and downhole measurements at six USC strong-motion sites[J]. Seismological Research Letters, 1998, 69(3): 222−229. doi: 10.1785/gssrl.69.3.222
|
[24] |
于涵, 刘财, 王典, 等. 面波频散能量谱计算方法[J]. 吉林大学学报(地球科学版), 2022,52(2): 602−612.
YU H, LIU C, WANG D, et al. Calculation method of surface wave dispersion energy spectrum[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 602−612. (in Chinese).
|
[25] |
Dal MORO G, PIPAN M, FORTE E, et al. Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments[C]//The 2003 SEG Annual Meeting, Seg Technical Program Expanded Abstracts, Dallas, Texas, 2003: 1247-1250.
|
[26] |
LUO Y, XIA J, MILLER R D, et al. Rayleigh-wave mode separation by high-resolution linear Radon transform[J]. Geophysical Journal International, 2009, 179(1): 254−264. doi: 10.1111/j.1365-246X.2009.04277.x
|
[27] |
杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(VWTM)的多道Rayleigh波分析方法[J]. 地球物理学报, 2019,62(1): 298−301, 303-305.
YANG Z T, CHEN X F, PAN L, et al. Multichannel Rayleigh wave analysis method based on vector wave-number transformation method[J]. Journal of Geophysics, 2019, 62(1): 298−301, 303-305. (in Chinese).
|
[28] |
苏悦, 杨振涛, 杨博, 等. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报(自然科学版), 2020,56(3): 427−435.
SU Y, YANG Z T, YANG B, et al. Application of active source rayleigh wave multi-mode extraction method based on vector wavenumber transform in near-surface formation structure detection[J]. Journal of Peking University (Natural Science), 2020, 56(3): 427−435. (in Chinese).
|
[29] |
杨振涛. 被动源面波勘探高阶频散曲线的提取和应用[D]. 合肥: 中国科学技术大学, 2017.
YANG Z T. Extraction and application of high order dispersion curve in passive surface wave exploration[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese).
|
[30] |
LING S. Research on the estimation of phase velocities of surface waves in microtremors[D]. Hokkaido: Hokkaido University, 1994.
|
[31] |
LOUIE J N. Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bulletin of the Seismological Society of America, 2001, 91(2): 347−364. doi: 10.1785/0120000098
|
[32] |
YOKOI T, MARGARYAN S. Consistency of the spatial autocorrelation method with seismic interferometry and its consequence[J]. Geophysical Prospecting, 2008, 56(3): 435−451. doi: 10.1111/j.1365-2478.2008.00709.x
|
[33] |
牟新刚, 周奇, 周晓, 等. 一种高频拓展的改进地震干涉算法研究[J]. 仪器仪表学报, 2021,42(4): 59−66.
MOU X G, ZHOU Q, ZHOU X, et al. Research on an improved seismic interference algorithm based on high frequency expansion[J]. Chinese Journal of Instrument, 2021, 42(4): 59−66. (in Chinese).
|
[34] |
李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 合肥: 中国科学技术大学, 2020.
LI Z B. Extraction of dispersion information from seismic records using frequency bessel transform[D]. Hefei: University of Science and Technology of China, 2020. (in Chinese).
|
[35] |
黎汉民. 矢量波数变换法在浅层勘探中的应用[D]. 合肥: 中国科学技术大学, 2018.
LI H M. Application of vector wavnumber transformation method in shallow exploration[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese).
|
[36] |
MA Q, PAN L, CHEN X. Utilizing vector wavenumber transform method to extract multi-mode dispersion curves of Rayleigh waves from ambient seismic noise and the application to structure inversion in Bohemian Massif[J]. Geophysical Research Abstracts, 2019, 21: 1.
|
[37] |
ZHANG X T, JIA Z, ROSS Z E, et al. Extracting dispersion curves from ambient noise correlations using deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8932−8939. doi: 10.1109/TGRS.2020.2992043
|
[38] |
WANG Z N, SUN C Y, WU D S. Automatic picking of multi-mode surface-wave dispersion curves based on machine learning clustering methods[J]. Computational Geosciences, 2021, 153: 104809.
|
[39] |
DAI T Y, XIA J H, NING L, et al. Deep learning for extracting dispersion curves[J]. Surveys in Geophysics, 2021, 42(1): 69−95. doi: 10.1007/s10712-020-09615-3
|
[40] |
YANG T W, XU Y, CAO D P, et al. SDCnet: An Unet with residual blocks for extracting dispersion curves from seismic data[J]. Computational Geosciences, 2022, 166: 105183. doi: 10.1016/j.cageo.2022.105183
|
[41] |
周旭彤, 胡进军, 谭景阳, 等. 基于HVSR的DONET1海底地震动场地效应研究[J]. 震灾防御技术, 2021,16(1): 105−115.
ZHOU X T, HU J J, TAN J Y, et al. Study on-site effect of DONET1 seabed ground motion based on HVSR[J]. Earthquake Prevention Technology, 2021, 16(1): 105−115. (in Chinese).
|
[42] |
阮明明, 王帅军, 田晓峰, 等. 利用HVSR法探测渭河盆地浅部构造[J]. 大地测量与地球动力学, 2022,42(6): 584−587, 621.
RUAN M M, WANG S J, TIAN X F, et al. Exploration of shallow structures in Weihe Basin by HVSR method[J]. Geodesy and Geodynamics, 2022, 42(6): 584−587, 621. (in Chinese).
|
[43] |
NAKAMURA Y. Clear identification of fundamental idea of Nakamura's technique and its applications[C]//12th World Conference on Earthquake Engineering (12 WCEE 2000) v.5: Engineering Seismology, 2001.
|
[44] |
张立, 刘争平. 水平层状介质中基阶瑞利面波椭圆极化特征数值分析与研究[J]. 地球物理学报, 2013,(5): 1686−1695.
ZHANG L, LIU Z P. Numerical analysis and study on elliptic polarization characteristics of fundamental Rayleigh surface waves in horizontal layered media[J]. Journal of Geophysics, 2013, (5): 1686−1695. (in Chinese).
|
[45] |
OUBAICHE E, CHATELAIN J L, BOUGUERN A, et al. Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast[J]. Seismological Research Letters, 2012, 83(6): 1038−1046. doi: 10.1785/0220120004
|
[46] |
PICOZZI M, ALBARELLO D. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation[J]. Geophysical Journal International, 2004, 169(1): 189−200.
|
[47] |
HERAK M. ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise[J]. Computational Geosciences, 2008, 34(11): 1514−1526. doi: 10.1016/j.cageo.2007.07.009
|
[48] |
BIGNARDI S, MANTOVANI A, ZEID N A. OpenHVSR: Imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion[J]. Computational Geosciences, 2016, 93(1): 103−113.
|
[49] |
BIGNARDI S, YEZZI A J, FIUSSELLO S, et al. OpenHVSR-processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content[J]. Computational Geosciences, 2018, 120: 10−20. doi: 10.1016/j.cageo.2018.07.006
|
[50] |
宓彬彬. 复杂浅地表弹性介质面波分析方法研究[D]. 武汉: 中国地质大学, 2018.
MI B B. Study on surface wave analysis method of complex shallow surface elastic medium[D]. Wuhan: China University of Geosciences, 2018. (in Chinese).
|
[51] |
DAL MORO G, PANZA G F. Multiple-peak HVSR curves: Management and statistical assessment[J]. Engineering Geology, 2022, 297: 106500. doi: 10.1016/j.enggeo.2021.106500
|
[52] |
CAPIZZI P, MARTORANA R. Analysis of HVSR data using a modified centroid-based algorithm for near-surface geological reconstruction[J]. Geosciences, 2022, 12(4): 147. doi: 10.3390/geosciences12040147
|
[53] |
ALONSO-PANDAVENES O, TORRES G, TORRIJO F J, et al. Basement tectonic structure and sediment thickness of a valley defined using HVSR geophysical investigation, Azuela valley, Ecuador[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 1−14.
|
[54] |
林国良, 张潜, 崔建文, 等. 利用地脉动HVSR研究2014年鲁甸6.5级地震场地效应[J]. 地震研究, 2019,42(4): 531−537, 650.
LIN G L, ZHANG Q, CUI J W, et al. Study on the side effect of the 2014 Ludian M6.5 earthquake using ground pulsation HVSR[J]. Seismological Research, 2019, 42(4): 531−537, 650. (in Chinese).
|
[55] |
FAH D, WATHELET M, KRISTEKOVA M, et al. Using ellipticity information for site characterization[M]. NERIES JRA4 "Geotechnical Site Characterisation", 2009.
|
[56] |
ENDRUN B. Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements[J]. Journal of Seismology, 2011, 15(3): 443−472. doi: 10.1007/s10950-010-9191-x
|
[57] |
POGGI V, FAH D. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations[J]. Geophysical Journal International, 2010, 180(1): 251−267. doi: 10.1111/j.1365-246X.2009.04402.x
|
[58] |
FERREIRA A M G, MARIGNIER A, ATTANAYAKE J, et al. Crustal structure of the Azores Archipelago from Rayleigh wave ellipticity data[J]. Geophysical Journal International, 2020, 221(2): 1232−1247. doi: 10.1093/gji/ggaa076
|
[59] |
杜亚楠. 基于多阶瑞雷波视频散曲线和椭圆率曲线联合反演的微动探测方法研究[D]. 北京: 中国科学院大学, 2019.
DU Y N. Research on fretting detection method based on multi-order Rayleigh wave video dispersion curve and ellipticity curve inversion[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese).
|
[60] |
SOCCO L V, BOIERO D. Improved Monte Carlo inversion of surface wave data[J]. Geophysical Prospecting, 2008, 56(3): 357−371. doi: 10.1111/j.1365-2478.2007.00678.x
|
[61] |
DAL MORO G, PIPAN M. Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms[J]. Journal of Applied Geophysics, 2007, 61(1): 56−81. doi: 10.1016/j.jappgeo.2006.04.001
|
[62] |
SONG X H, GU H M, ZHANG X Q, et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computational Geosciences, 2008, 34(6): 611−624. doi: 10.1016/j.cageo.2007.05.019
|
[63] |
SAMBRIDGE M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space[J]. Geophysical Journal International, 1999, 138(2): 479−494. doi: 10.1046/j.1365-246X.1999.00876.x
|
[64] |
SONG X H, TANG L, LV X C, et al. Shuffled complex evolution approach for effective and efficient surface wave analysis[J]. Computational Geosciences, 2012, 42: 7−17.
|
[65] |
SONG X H, TANG L, LV X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, (84): 1−13.
|
[66] |
SONG X H, LI L, ZHANG X Q, et al. An implementation of differential search algorithm (DSA) for inversion of surface wave data[J]. Journal of Applied Geophysics, 2014, 111: 334−345. doi: 10.1016/j.jappgeo.2014.10.017
|
[67] |
SONG X H, LI L, ZHANG X Q, et al. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2014, 109: 47−61. doi: 10.1016/j.jappgeo.2014.07.014
|
[68] |
SONG X H, GU H M, TANG L, et al. Application of artificial bee colony algorithm on surface wave data[J]. Computational Geosciences, 2015, 83: 219−230.
|
[69] |
SONG X H, TANG L, ZHAO S T, et al. Grey wolf optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 147−157.
|
[70] |
LU Y X, PENG S P, DU W F, et al. Rayleigh wave inversion using heat-bath simulated annealing algorithm[J]. Journal of Applied Geophysics, 2016, 134: 267−280. doi: 10.1016/j.jappgeo.2016.09.008
|
[71] |
SAIFUDDIN, YAMANAKA H, CHIMOTO K. Variability of shallow soil amplification from surface-wave inversion using the Markov-chain Monte Carlo method[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 141−151.
|
[72] |
MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96(0): 120−133.
|
[73] |
高旭, 于静, 李学良, 等. 自适应权重蜻蜓算法及其在瑞雷波频散曲线反演中的应用[J]. 石油地球物理勘探, 2021,56(4): 745−757, 671-672.
GAO X, YU J, LI X L, et al. Adaptive weighted Dragonfly algorithm and its application in Rayleigh wave dispersion curve inversion[J]. Petroleum geophysical exploration, 2021, 56(4): 745−757, 671-672. (in Chinese).
|
[74] |
FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377. doi: 10.1016/j.eswa.2020.113377
|
[75] |
于涵, 刘财, 王典, 等. 基于改进海洋捕食者优化算法和瑞雷波频散曲线的近地表地层参数反演[J]. 地球物理学报, 2023,66(2): 796−809.
YU H, LIU C, WANG D, et al. Inversion of near-surface formation parameters based on improved marine predator optimization algorithm and Rayleigh wave dispersion curve[J]. Chinese Journal of Geophysics, 2023, 66(2): 796−809. (in Chinese).
|
[76] |
MATASSONI L, FIASCHI A. Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils[J]. Journal of Mountain Science, 2020, 17(3): 740−752. doi: 10.1007/s11629-019-5753-8
|
[77] |
OBERMANN A, PLANES T, LAROSE E, et al. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6285−6294. doi: 10.1002/2013JB010399
|
[78] |
BENNINGTON N, HANEY M, THURBER C, et al. Inferring magma dynamics at Veniaminof Volcano via application of ambient noise[J]. Geophysical Research Letters, 2018, 45(21): 11.
|
[79] |
MELE M, BERSEZIO R, BINI A, et al. Subsurface profiling of buried valleys in central alps (northern Italy) using HVSR single-station passive seismic[J]. Journal of Applied Geophysics, 2021, 193: 104407. doi: 10.1016/j.jappgeo.2021.104407
|
[80] |
KANG S Y, KIM K H. Bedrock depth variations and their applications to identify Blind faults in the Pohang area using the horizontal-to-vertical spectral ratio (HVSR)[J]. Journal of the Korean earth science society, 2022, 43(1): 188−198. doi: 10.5467/JKESS.2022.43.1.188
|
[81] |
SGATTONI G, CASTELLARO S. Detecting 1-D and 2-D ground resonances with a single-station approach[J]. Geophysical Journal International, 2020, 223(1): 471−487. doi: 10.1093/gji/ggaa325
|
[82] |
MANZO R, NARDONE L, GAUDIOSI G, et al. A first 3-D shear wave velocity model of the Ischia Island (Italy) by HVSR inversion[J]. Geophysical Journal International, 2022, 230(3): 2056−2072. doi: 10.1093/gji/ggac157
|
[83] |
叶咸, 余相贵, 李果, 等. 瞬态瑞雷面波勘探技术在公路边坡注浆加固效果检测中的应用[J]. 公路交通科技(应用技术版), 2016,(2): 89−91, 94.
YE X, YU X G, LI G, et al. Application of transient Rayleigh surface wave exploration technology in Detection of reinforcement effect of highway slope grouting[J]. Highway Traffic Technology (Applied Technology Edition), 2016, (2): 89−91, 94. (in Chinese).
|
[84] |
徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009,52(7): 1923−1930. doi: 10.3969/j.issn.0001-5733.2009.07.028
XU P F, LI C J, LING S Q, et al. Detection of collapse column in coal mine by microdynamic prospecting method[J]. Chinese Journal of Geophysics, 2009, 52(7): 1923−1930. (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.07.028
|
[85] |
刘艳秋, 徐洪苗, 王小勇, 等. 面波勘探在工程勘察中的应用[J]. 安徽地质, 2019,29(1): 40−44. doi: 10.3969/j.issn.1005-6157.2019.01.008
LIU Y Q, XU H M, WANG X Y, et al. Application of surface wave exploration in engineering investigation[J]. Anhui Geology, 2019, 29(1): 40−44. (in Chinese). doi: 10.3969/j.issn.1005-6157.2019.01.008
|
[86] |
吴曲波, 潘自强, 陈金勇, 等. 利用瞬态瑞雷面波法探测浅层玄武岩三维分布−以沙特Sabkhah Ad Dumathah地区为例[J]. 地球物理学进展, 2019,34(5): 1938−1944. doi: 10.6038/pg2019CC0401
WU Q B, PAN Z Q, CHEN J Y, et al. Detection of three-dimensional distribution of shallow basalts by transient Rayleigh surface wave method: A case study of Sabkhah Ad Dumathah area, Saudi Arabia[J]. Progress in Geophysics, 2019, 34(5): 1938−1944. (in Chinese). doi: 10.6038/pg2019CC0401
|
[87] |
周荣亮, 刘彦华, 徐睿知. 多道瞬态面波在LNG罐区地基勘察中的应用[J]. 工程地球物理学报, 2022,19(2): 162−167. doi: 10.3969/j.issn.1672-7940.2022.02.005
ZHOU R L, LIU Y H, XU R Z. Application of multi-channel transient surface waves in the ground investigation of LNG tank area[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 162−167. (in Chinese). doi: 10.3969/j.issn.1672-7940.2022.02.005
|
[88] |
李圣林, 胡泽安, 吴海波. 瞬态瑞雷面波勘探中隐伏溶洞的响应特征研究[J]. 物探化探计算技术, 2019,41(4): 541−546. doi: 10.3969/j.issn.1001-1749.2019.04.15
LI S L, HU Z A, WU H B. Study on response characteristics of a hidden cave in transient Rayleigh surface wave exploration[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(4): 541−546. (in Chinese). doi: 10.3969/j.issn.1001-1749.2019.04.15
|
[89] |
熊友亮, 高建华, 彭军. 天然源面波法在堰塞体上的研究及应用[J]. 工程地球物理学报, 2022,19(2): 149−154.
XIONG Y L, GAO J H, PENG J. Research and application of natural source surface wave method on barrier body[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 149−154. (in Chinese).
|
[90] |
RUDENKO D, SHARIF M, JUBRAN R, et al. Use of surface wave testing to develop pile driving vibration criteria in a coastal environment[C]//GSP 334·Geo-Congress 2022, 2022.
|
[91] |
IVANOV J, LEITNER B, SHEFCHIK W, et al. Evaluating hazards at salt cavern sites using multichannel analysis of surface waves[J]. The Leading Edge, 2013, 32(3): 298−305. doi: 10.1190/tle32030298.1
|
[92] |
LEWIŃSKA P, MATUŁA R, DYCZKO A. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability[J]. Seminary on Geomatics, Civil and Environmental Engineering (2017BGC) E3S Web of Conferences, 2018, 26: 8.
|
[93] |
KNAPMEYER-ENDRUN B, GOLOMBEK M P, OHRNBERGER M. Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed insight landing site in elysium planitia, Mars[J]. Space Science Reviews, 2017, 211(1/4): 339−382. doi: 10.1007/s11214-016-0300-1
|
[94] |
MAHVELATI S, COE J T. Horizontal-to-vertical spectral ratio (HVSR) analysis of the Martian Passive seismic data from the Insight mission[J]. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments, 2021: 108-115.
|
[95] |
LAROSE E, KHAN A, NAKAMURA Y, et al. Lunar subsurface investigated from correlation of seismic noise[J]. Geophys Res Lett, 2005, 32(16).
|
[96] |
LAROSE C S-S N E. Lunar noise correlation, imaging and monitoring[J]. Earthquake Science, 2010, 23(5): 519−530. doi: 10.1007/s11589-010-0750-6
|
[97] |
NISHITSUJI Y, ROWE C A, WAPENAAR K, et al. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry[J]. Journal of Geophysical Research E:Planets, 2016, 121(4): 695−713. doi: 10.1002/2015JE004975
|
[98] |
NISHITSUJI Y, RUIGROK E, DRAGANOV D. Azimuthal anisotropy of the megaregolith at the apollo 14 Landing Site[J]. Journal of Geophysical Research-Planets Section, 2020, 125(5): e2019JE006126.
|
[99] |
IKEDA T, MATSUOKA T, TSUJI T, et al. Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves[J]. Geophysics, 2015, 80(1): En1−En11.
|
[100] |
BUDI A P, GINTING R A, SUNARDI B, et al. Combination of passive seismic (HVSR) and active seismic (MASW) methods to obtain shear wave velocity model of subsurface in Majalengka[J]. Journal of Physics: Conference Series, 2021, 1805(1): 012002. doi: 10.1088/1742-6596/1805/1/012002
|
[101] |
ABDIALIM S, HAKIMOV F, KIM J, et al. Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: A case study in Singapore[J]. Earthquakes and Structures, 2021, 21(3): 231−238.
|
[102] |
李巧灵, 张辉, 雷晓东, 等. 综合利用多道瞬态面波和微动探测分析斜坡内部结构[J]. 物探与化探, 2022,46(1): 258−267.
LI Q L, ZHANG H, LEI X D, et al. Analysis of slope internal structure by multi-channel transient surface wave and fretting detection[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 258−267. (in Chinese).
|
[103] |
刘道涵, 徐俊杰, 刘磊, 等. 地球物理联合探测在识别岩溶地面塌陷精细结构中的应用−以武汉市为例[J]. 地质与勘探, 2022,58(4): 865−874.
LIU D H, XU J J, LIU L, et al. Application of geophysical joint detection in identifying fine structure of Karst ground collapse: A case study of Wuhan city[J]. Geology and exploration, 2022, 58(4): 865−874. (in Chinese).
|
[104] |
徐吉祥, 张晓亮, 李潇, 等. 地表浅部地震勘探方法在城市隐伏活动断裂调查中的应用[J]. 城市地质, 2022,17(1): 79−84. doi: 10.3969/j.issn.1007-1903.2022.01.012
XU J X, ZHANG X L, LI X, et al. Application of shallow surface seismic exploration method in urban hidden active fault investigation[J]. Urban Geology, 2022, 17(1): 79−84. (in Chinese). doi: 10.3969/j.issn.1007-1903.2022.01.012
|
[105] |
PERTON M, SPICA Z J, CLAYTON R W, et al. Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V spectral ratio analysis[J]. Geophysical Journal International, 2020, 220(1): 415−427. doi: 10.1093/gji/ggz458
|
[106] |
LONTSI A M, GARCIA-JEREZ A, MOLINA-VILLEGAS J C, et al. A generalized theory for full microtremor horizontal-to-vertical
|