ISSN 1004-4140
CN 11-3017/P
YAN Z Y, GAO H W, ZHANG L. A Review of 4DCT Imaging and Reconstruction Methods[J]. CT Theory and Applications, 2024, 33(2): 243-262. DOI: 10.15953/j.ctta.2023.102. (in Chinese).
Citation: YAN Z Y, GAO H W, ZHANG L. A Review of 4DCT Imaging and Reconstruction Methods[J]. CT Theory and Applications, 2024, 33(2): 243-262. DOI: 10.15953/j.ctta.2023.102. (in Chinese).

A Review of 4DCT Imaging and Reconstruction Methods

More Information
  • Received Date: April 29, 2023
  • Accepted Date: October 25, 2023
  • Available Online: November 05, 2023
  • In this paper, the main literature related to 4DCT imaging and reconstruction techniques over the past 20 years is reviewed, and the contents are summarized. This paper provides a systematic and comprehensive introduction to 4DCT research from five perspectives: the concept of 4DCT, scanning mode and imaging method, reconstruction algorithm, application, research status, and future development expectations. In this study, five types of reconstruction algorithms are summarized, and the advantages, disadvantages, and research difficulties of each algorithm are briefly evaluated. Finally, we conduct a brief statistical analysis on the cited works from the perspective of reconstruction methods, revealing the research progress and future research trends of 4DCT reconstruction algorithms.

  • [1]
    ROBB R A. The dynamic spatial reconstructor: An X-ray video fluoroscopic CT scanner for dynamic volume imaging of moving organs[J]. IEEE Transactions on Medical Imaging, 1982, 1(1): 22−33. DOI: 10.1109/TMI.1982.4307545.
    [2]
    ENDO M, TSUNOO T, KANDATSU S, et al. Four-dimensional computed tomography (4DCT): Concepts and preliminary development[J]. Radiation Medicine, 2003, 21(1): 17−22.
    [3]
    CHEN G H, THERIAULT-LAUZIER P, TANG J, et al. Time-resolved interventional cardiac C-arm cone-beam CT: An application of the PICCS algorithm[J]. IEEE Transactions on Medical Imaging, 2011, 31(4): 907−923.
    [4]
    ICHIKAWA T, KUMAZAKI T. 4D-CT: A new development in three-dimensional hepatic computed tomography[J]. Journal of Nippon Medical School, 2000, 67(1): 24−27. DOI: 10.1272/jnms.67.24.
    [5]
    SHEPP L A, HILAL S K, SCHULZ R A. The tuning fork artifact in computerized tomography[J]. Computer Graphics and Image Processing, 1979, 10(3): 246−255. DOI: 10.1016/0146-664X(79)90004-2.
    [6]
    MAYO J R, MÜLLER N L, HENKELMAN R M. The double-fissure sign: A motion artifact on thin-section CT scans[J]. Radiology, 1987, 165(2): 580−581. DOI: 10.1148/radiology.165.2.3659392.
    [7]
    RITCHIE C J, HSIEH J, GARD M F, et al. Predictive respiratory gating: A new method to reduce motion artifacts on CT scans[J]. Radiology, 1994, 190(3): 847−852. DOI: 10.1148/radiology.190.3.8115638.
    [8]
    CRAWFORD C R, KING K F, RITCHIE C J, et al. Respiratory compensation in projection imaging using magnification and displacement model[J]. IEEE Transactions on Medical Imaging, 1996, 15(3): 327−332. DOI: 10.1109/42.500141.
    [9]
    MOORREES J, BEZAK E. Four dimensional CT imaging: A review of current technologies and modalities[J]. Australasian Physical & Engineering Sciences in Medicine, 2012, 35(1): 9−23.
    [10]
    KEALL P. 4-dimensional computed tomography imaging and treatment planning[J]. Seminars in Radiation Oncology, 2003, 14(1): 81−90.
    [11]
    MAH D, HANLEY J, ROSENZWEIG K E, et al. Technical aspects of the deep inspiration breath-holding technique in the treatment of thoracic cancer[J]. International Journal of Radiation Oncology, Biology, Physics, 2000, 48(4): 1175−1185. DOI: 10.1016/S0360-3016(00)00747-1.
    [12]
    KEALL P J, CHEN G T Y, JOSHI S, et al. Time-the fourth dimension in radiotherapy (ASTRO Panel discussion)[J]. International Journal of Radiation Oncology, Biology, Physics, 2003, 57(S2): S8−S9.
    [13]
    FENSTER A, DOWNEY D B, CARDINAL H. Three-dimensional ultrasound imaging[J]. Physics in Medicine & Biology, 2001, 46(5): R67.
    [14]
    ENDO M, MORI S, TSUNOO T, et al. Development and performance evaluation of the first model of 4DCT-scanner[C]//IEEE. 2002 IEEE Nuclear Science Symposium Conference Record, Norfolk, VA, USA, 2002, 3: 1824-1828.
    [15]
    FORD E C, MAGERAS G S, YORKE E, et al. Respiration‐correlated spiral CT: A method of measuring respiratory‐induced anatomic motion for radiation treatment planning[J]. Medical Physics, 2003, 30(1): 88−97. DOI: 10.1118/1.1531177.
    [16]
    VEDAM S S, KEALL P J, KINI V R, et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal[J]. Physics in Medicine & Biology, 2002, 48(1): 45.
    [17]
    KEALL P J, STARKSCHALL G, SHUKLA H E E, et al. Acquiring 4D thoracic CT scans using a multislice helical method[J]. Physics in Medicine & Biology, 2004, 49(10): 2053.
    [18]
    LOW D A, NYSTROM M, KALININ E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing[J]. Medical Physics, 2003, 30(6): 1254−1263. DOI: 10.1118/1.1576230.
    [19]
    PAN T, LEE T Y, RIETZEL E, et al. 4D-CT imaging of a volume influenced by respiratory motion on multislice CT[J]. Medical Physics, 2004, 31(2): 333−340. DOI: 10.1118/1.1639993.
    [20]
    KALENDER W A, SEISSLER W, KLOTZ E, et al. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation[J]. Radiology, 1990, 176(1): 181−183. DOI:10.1148/ radiology.176.1.2353088.
    [21]
    PAN T. Helical 4DCT and comparison with cine 4DCT[J]. 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy, 2013: 25-41.
    [22]
    WU X, XIAO S, ZHANG Y. Registration-based super-resolution reconstruction for lung 4D-CT[C]//IEEE. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014: 2444-2447.
    [23]
    ZHANG Y, WU X, YANG W, et al. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach[J]. Medical Physics, 2014, 41(11): 111917. DOI:10.1118/ 1.4899185.
    [24]
    WANG T, CAO L, YANG W, et al. Adaptive patch-based POCS approach for super-resolution reconstruction of 4D-CT lung data[J]. Physics in Medicine & Biology, 2015, 60(15): 5939.
    [25]
    ZHANG Y, WU G, YAP P T, et al. Hierarchical patch-based sparse representation: A new approach for resolution enhancement of 4D-CT lung data[J]. IEEE Transactions on Medical Imaging, 2012, 31(11): 1993−2005. DOI: 10.1109/TMI.2012.2202245.
    [26]
    LIU H, LIN Y, IBRAGIMOV B, et al. Low-dose 4D-CT super-resolution reconstruction via inter-plane motion estimation based on optical flow[J]. Biomedical Signal Processing and Control, 2020, 62: 102085. DOI: 10.1016/j.bspc.2020.102085.
    [27]
    ZHANG Y, WU G, YAP P T, et al. Reconstruction of super-resolution lung 4D-CT using patch-based sparse representation[C]//IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 925-931.
    [28]
    PAN T. Comparison of helical and cine acquisitions for 4D-CT imaging with multi-slice CT[J]. Medical Physics, 2005, 32(2): 627−634. DOI: 10.1118/1.1855013.
    [29]
    ZENG R, FESSLER J A, BALTER J M, et al. Iterative sorting for 4DCT images based on internal anatomy motion[C]//IEEE. 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 2007: 744-747.
    [30]
    WINK N M, PANKNIN C, SOLBERG T D. Phase versus amplitude sorting of 4D-CT data[J]. Journal of Applied Clinical Medical Physics, 2006, 7(1): 77−85.
    [31]
    GEORG M, SOUVENIR R, HOPE A, et al. Manifold learning for 4DCT reconstruction of the lung[C]//IEEE. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 2008: 1-8.
    [32]
    LI G, CITRIN D, CAMPHAUSEN K, et al. Advances in 4D medical imaging and 4D radiation therapy[J]. Technology in Cancer Research & Treatment, 2008, 7(1): 67−81.
    [33]
    BERLINGER K, SAUER O, VENCES L, et al. A simple method for labeling CT images with respiratory states[J]. Medical Physics, 2006, 33(9): 3144−3148. DOI: 10.1118/1.2229420.
    [34]
    KACHELRIEß M, ULZHEIMER S, KALENDER W A. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart[J]. Medical Physics, 2000, 27(8): 1881−1902. DOI: 10.1118/1.1286552.
    [35]
    SCHIEVANO S, CAPELLI C, YOUNG C, et al. Four-dimensional computed tomography: A method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle[J]. European Radiology, 2011, 21: 36−45. DOI: 10.1007/s00330-010-1913-5.
    [36]
    CARNES G, GAEDE S, YU E, et al. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol[J]. Physics in Medicine & Biology, 2009, 54(7): 2049.
    [37]
    LI R, LEWIS J H, CERVINO L I, et al. 4DCT sorting based on patient internal anatomy[J]. Physics in Medicine & Biology, 2009, 54(15): 4821.
    [38]
    LU J, GUERRERO T M, MUNRO P, et al. Four-dimensional cone-beam CT with adaptive gantry rotation and adaptive data sampling[J]. Medical Physics, 2007, 34(9): 3520−3529. DOI: 10.1118/1.2767145.
    [39]
    ZIJP L, SONKE J J, van HERK M. Extraction of the respiratory signal from sequential thorax cone-beam X-ray images[C]//International Conference on the Use of Computers in Radiation Therapy, 2004: 507-509.
    [40]
    RIT S, SARRUT D, GINESTET C. Respiratory signal extraction for 4DCT imaging of the thorax from cone-beam CT projections[C]//Medical Image Computing and Computer-assisted Intervention (MICCAI 2005): 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part I 8. Springer Berlin Heidelberg, 2005: 556-563.
    [41]
    ZHANG S X, ZHOU L H, YU H, et al. 4D-CT reconstruction based on body volume change[C]//World Congress on Medical Physics and Biomedical Engineering, 2009, Munich, Germany: Vol. 25/1 Radiation Oncology. Springer Berlin Heidelberg, 2009: 569-572.
    [42]
    ZHANG S, ZHOU L, LIN S, et al. 4D-CT reconstruction based on pulmonary average CT values[J]. Bio-Medical Materials and Engineering, 2014, 24(1): 85−94. DOI: 10.3233/BME-130787.
    [43]
    HUGO G D, ROSU M. Advances in 4D radiation therapy for managing respiration: Part I—4D imaging[J]. Zeitschrift für Medizinische Physik, 2012, 22(4): 258−271.
    [44]
    COOPER B J, O'BRIEN R T, BALIK S, et al. Respiratory triggered 4D cone-beam computed tomography: A novel method to reduce imaging dose[J]. Medical Physics, 2013, 40(4): 041901. DOI: 10.1118/1.4793724.
    [45]
    PAN T, MARTIN R M, LUO D. New prospective 4D-CT for mitigating the effects of irregular respiratory motion[J]. Physics in Medicine & Biology, 2017, 62(15): N350.
    [46]
    PAN T, SUN X, LUO D. Improvement of the cine-CT based 4D-CT imaging[J]. Medical Physics, 2007, 34(11): 4499−4503. DOI: 10.1118/1.2794225.
    [47]
    KEALL P J, VEDAM S S, GEORGE R, et al. Respiratory regularity gated 4DCT acquisition: Concepts and proof of principle[J]. Australasian Physics & Engineering Sciences in Medicine, 2007, 30: 211−220.
    [48]
    LU W, PARIKH P J, HUBENSCHMIDT J P, et al. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4DCT[J]. Medical Physics, 2006, 33(8): 2964−2974. DOI: 10.1118/1.2219772.
    [49]
    DIETRICH L, JETTER S, TÜCKING T, et al. Linac-integrated 4D cone beam CT: First experimental results[J]. Physics in Medicine & Biology, 2006, 51(11): 2939.
    [50]
    LI H, NOEL C, GARCIA-RAMIREZ J, et al. Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy[J]. Medical Physics, 2012, 39(2): 922−932. DOI: 10.1118/1.3679015.
    [51]
    RIETZEL E, PAN T, CHEN G T Y. Four-dimensional computed tomography: Image formation and clinical protocol[J]. Medical Physics, 2005, 32(4): 874−889. DOI: 10.1118/1.1869852.
    [52]
    JIA X, LOU Y, DONG B, et al. 4D computed tomography reconstruction from few-projection data via temporal non-local regularization[C]//Medical Image Computing and Computer-assisted Intervention (MICCAI 2010): 13th International Conference, Beijing, China, 2010, Proceedings, Part I 13. Springer Berlin Heidelberg, 2010: 143-150.
    [53]
    LENG S, ZAMBELLI J, TOLAKANAHALLI R, et al. Streaking artifacts reduction in four-dimensional cone-beam computed tomography[J]. Medical Physics, 2008, 35(10): 4649−4659. DOI: 10.1118/1.2977736.
    [54]
    WERNER R, SENTKER T, MADESTA F, et al. Intelligent 4DCT sequence scanning (i4DCT): Concept and performance evaluation[J]. Medical Physics, 2019, 46(8): 3462−3474. DOI: 10.1002/mp.13632.
    [55]
    AHMAD M, BALTER P, PAN T. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography: Guided radiation therapy[J]. Medical Physics, 2011, 38(10): 5646−5656. DOI: 10.1118/1.3634058.
    [56]
    张书旭,周凌宏,徐海荣,等. 基于相邻图像最相似原理的 4D-CT 图像重建研究[J]. 中国医学物理学杂志,2009,26(5): 1409−1414.

    ZHANG S X, ZHOU L H, XU H R, et al. Four-dimensional computerized tomography (4D-CT) reconstruction based on the most similarity principle of spatial adjacent images[J]. Chinese Journal of Medical Physics, 2009, 26(5): 1409−1414. (in Chinese).
    [57]
    HE T, XUE Z, NITSCH P L, et al. Helical mode lung 4D-CT reconstruction using Bayesian model[C]//Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013): 16th International Conference, Nagoya, Japan, 2013, Proceedings, Part III 16. Springer Berlin Heidelberg, 2013: 33-40.
    [58]
    WERNER R, SZKITSAK J, SENTKER T, et al. Comparison of intelligent 4DCT sequence scanning and conventional spiral 4DCT: A first comprehensive phantom study[J]. Physics in Medicine & Biology, 2021, 66(1): 015004.
    [59]
    WERNER R, SENTKER T, MADESTA F, et al. Intelligent 4DCT sequence scanning (i4DCT): First scanner prototype implementation and phantom measurements of automated breathing signal-guided 4DCT[J]. Medical Physics, 2020, 47(6): 2408−2412. DOI: 10.1002/mp.14106.
    [60]
    GAI N, AXEL L. Correction of motion artifacts in linogram and projection reconstruction MRI using geometry and consistency constraints[J]. Medical Physics, 1996, 23(2): 251−262. DOI: 10.1118/1.597713.
    [61]
    WATKINS W T, LI R, LEWIS J, et al. Patient-specific motion artifacts in 4DCT[J]. Medical Physics, 2010, 37(6 Part 1): 2855-2861.
    [62]
    PACK J D, MANOHAR A, RAMANI S, et al. Four-dimensional computed tomography of the left ventricle, Part I: Motion artifact reduction[J]. Medical Physics, 2022, 49(7): 4404−4418. DOI: 10.1002/mp.15709.
    [63]
    LU W, MACKIE T R. Tomographic motion detection and correction directly in sinogram space[J]. Physics in Medicine & Biology, 2002, 47(8): 1267.
    [64]
    LI S, PELIZZARI C A, CHEN G T Y. Unfolding patient motion with biplane radiographs[J]. Medical Physics, 1994, 21(9): 1427−1433. DOI: 10.1118/1.597188.
    [65]
    BALTER J M, LAM K L, SANDLER H M, et al. Automated localization of the prostate at the time of treatment using implanted radiopaque markers: Technical feasibility[J]. International Journal of Radiation Oncology, Biology and Physics, 1995, 33(5): 1281−1286. DOI: 10.1016/0360-3016(95)02083-7.
    [66]
    CROOK J M, RAYMOND Y, SALHANI D, et al. Prostate motion during standard radiotherapy as assessed by fiducial markers[J]. Radiotherapy and Oncology, 1995, 37(1): 35−42. DOI: 10.1016/0167-8140(95)01613-L.
    [67]
    EL NAQA I, LOW D A, DEASY J O, et al. Automated breathing motion tracking for 4D computed tomography[C]//2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No. 03CH37515). IEEE, 2003, 5: 3219-3222.
    [68]
    McKINNON G C, BATES R H T. Towards imaging the beating heart usefully with a conventional CT scanner[J]. IEEE Transactions on Biomedical Engineering, 1981(2): 123−127.
    [69]
    ZHENG Z, SUN M, PAVKOVICH J, et al. Fast 4D cone-beam reconstruction using the McKinnon-Bates algorithm with truncation correction and nonlinear filtering[C]//Medical Imaging 2011: Physics of Medical Imaging. SPIE, 2011, 7961: 817-824.
    [70]
    BERGNER F, BERKUS T, OELHAFEN M, et al. An investigation of 4D cone-beam CT algorithms for slowly rotating scanners[J]. Medical Physics, 2010, 37(9): 5044−5053. DOI: 10.1118/1.3480986.
    [71]
    QI Z, CHEN G H. Performance studies of four-dimensional cone-beam computed tomography[J]. Physics in Medicine & Biology, 2011, 56(20): 6709.
    [72]
    STAR-LACK J, SUN M, OELHAFEN M, et al. A modified McKinnon-Bates (MKB) algorithm for improved 4D cone-beam computed tomography (CBCT) of the lung[J]. Medical Physics, 2018, 45(8): 3783−3799. DOI: 10.1002/mp.13034.
    [73]
    KIM S, CHANG Y, RA J B. Cardiac motion correction based on partial angle reconstructed images in X-ray CT[J]. Medical Physics, 2015, 42(5): 2560−2571. DOI: 10.1118/1.4918580.
    [74]
    LI T, SCHREIBMANN E, YANG Y, et al. Motion correction for improved target localization with on-board cone-beam computed tomography[J]. Physics in Medicine & Biology, 2005, 51(2): 253.
    [75]
    RIT S, WOLTHAUS J, van HERK M, et al. On-the-fly motion-compensated cone-beam CT using an a priori motion model[C]//Medical Image Computing and Computer-assisted Intervention (MICCAI 2008): 11th International Conference, New York, NY, USA, 2008, Proceedings, Part I 11. Springer Berlin Heidelberg, 2008: 729-736.
    [76]
    WU G, WANG Q, LIAN J, et al. Reconstruction of 4D-CT from a single free-breathing 3D-CT by spatial-temporal image registration[C]//Information Processing in Medical Imaging: Proceedings of the Conference. NIH Public Access 2011, 22: 686.
    [77]
    BREHM M, PAYSAN P, OELHAFEN M, et al. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT[J]. Medical Physics, 2013, 40(10): 101913. DOI: 10.1118/1.4820537.
    [78]
    BREHM M, BERKUS T, OEHLHAFEN M, et al. Motion-compensated 4D cone-beam computed tomography[C]//2011 IEEE Nuclear Science Symposium Conference Record. IEEE, 2011: 3986-3993.
    [79]
    WANG J, GU X. High-quality four-dimensional cone-beam CT by deforming prior images[J]. Physics in Medicine & Biology, 2012, 58(2): 231.
    [80]
    CHRISTOFFERSEN C P V, HANSEN D, POULSEN P, et al. Registration-based reconstruction of four-dimensional cone beam computed tomography[J]. IEEE Transactions on Medical Imaging, 2013, 32(11): 2064−2077. DOI: 10.1109/TMI.2013.2272882.
    [81]
    McCLELLAND J R, BLACKALL J M, TARTE S, et al. A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy[J]. Medical Physics, 2006, 33(9): 3348−3358. DOI: 10.1118/1.2222079.
    [82]
    RIBLETT M J, CHRISTENSEN G E, WEISS E, et al. Data-driven respiratory motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) using groupwise deformable registration[J]. Medical Physics, 2018, 45(10): 4471−4482. DOI: 10.1002/mp.13133.
    [83]
    LI R, JIA X, LEWIS J H, et al. Real-time volumetric image reconstruction and 3D tumor localization based on a single X-ray projection image for lung cancer radiotherapy[J]. Medical Physics, 2010; 37(6 Part 1): 2822-2826.
    [84]
    LI T, KOONG A, XING L. Enhanced 4D cone-beam CT with inter-phase motion model[J]. Medical Physics, 2007, 34(9): 3688−3695. DOI: 10.1118/1.2767144.
    [85]
    YANG D, LU W, LOW D A, et al. 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling[J]. Medical Physics, 2008, 35(10): 4577−4590. DOI: 10.1118/1.2977828.
    [86]
    HUANG X, ZHANG Y, WANG J. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction[J]. Physics in Medicine & Biology, 2018, 63(4): 045002.
    [87]
    SCHÄFER D, BERTRAM M, CONRADS N, et al. Motion compensation for cone-beam CT based on 4D motion field of sinogram tracked markers[C]//International Congress Series. Elsevier, 2004, 1268: 189-194.
    [88]
    SARRUT D, BOLDEA V, MIGUET S, et al. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans[J]. Medical Physics, 2006, 33(3): 605−617. DOI: 10.1118/1.2161409.
    [89]
    HAHN J, BRUDER H, ROHKOHL C, et al. Motion compensation in the region of the coronary arteries based on partial-angle reconstruction from short-scan CT data[J]. Medical Physics, 2017, 44(11): 5795−5813. DOI: 10.1002/mp.12514.
    [90]
    BLONDEL C, VAILLANT R, MALANDAIN G, et al. 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field[J]. Physics in Medicine & Biology, 2004, 49(11): 2197.
    [91]
    BLONDEL C, MALANDAIN G, VAILLANT R, et al. Reconstruction of coronary arteries from a single rotational X-ray projection sequence[J]. IEEE Transactions on Medical Imaging, 2006, 25(5): 653−663. DOI: 10.1109/TMI.2006.873224.
    [92]
    ZHANG Y, TEHRANI J N, WANG J. A biomechanical modeling guided CBCT estimation technique[J]. IEEE Transactions on Medical Imaging, 2016, 36(2): 641−652.
    [93]
    ZHONG Z, GU X, MAO W, et al. 4D cone-beam CT reconstruction using multiorgan meshes for sliding motion modeling[J]. Physics in Medicine & Biology, 2016, 61(3): 996.
    [94]
    RUECKERT D, SONODA L I, HAYES C, et al. Nonrigid registration using free-form deformations: Application to breast MR images[J]. IEEE Transactions on Medical Imaging, 1999, 18(8): 712−721. DOI:10. 1109/42.796284.
    [95]
    HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/3): 185−203. DOI: 10.1016/0004-3702(81)90024-2.
    [96]
    THIRION J P. Image matching as a diffusion process: An analogy with Maxwell's demons[J]. Medical Image Analysis, 1998, 2(3): 243−260. DOI: 10.1016/S1361-8415(98)80022-4.
    [97]
    CRUM W R, HARTKENS T, HILL D L G. Non-rigid image registration: Theory and practice[J]. The British Journal of Radiology, 2004, 77(S2): S140−S153. DOI: 10.1259/bjr/25329214.
    [98]
    BOOKSTEIN F L. Principal warps: Thin-plate splines and the decomposition of deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(6): 567−585. DOI: 10.1109/34.24792.
    [99]
    ISOLA A A, ZIEGLER A, SCHÄFER D, et al. Motion compensated iterative reconstruction of a region of interest in cardiac cone-beam CT[J]. Computerized Medical Imaging and Graphics, 2010, 34(2): 149−159. DOI: 10.1016/j.compmedimag.2009.08.004.
    [100]
    MÜLLER K, SCHWEMMER C, HORNEGGER J, et al. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data[J]. Medical Physics, 2013, 40(3): 031107. DOI: 10.1118/1.4789593.
    [101]
    DAVIS M H, KHOTANZAD A, FLAMIG D P, et al. A physics-based coordinate transformation for 3-D image matching[J]. IEEE Transactions on Medical Imaging, 1997, 16(3): 317−328. DOI: 10.1109/42.585766.
    [102]
    STAUB D, DOCEF A, BROCK R S, et al. 4D Cone-beam CT reconstruction using a motion model based on principal component analysis[J]. Medical Physics, 2011, 38(12): 6697−6709. DOI: 10.1118/1.3662895.
    [103]
    邵光普. 基于主成分分析减少 4DCT 图像伪影算法研究[D]. 济南: 山东师范大学,2020.
    [104]
    DESBAT L, ROUX S, GRANGEAT P, et al. Exact fan-beam compensated reconstruction formula for time-dependent affine deformations[C]//Fully Three Dimensional Reconstruction in Radiology and Nuclear Medicine, Saint Malo, France, 2003.
    [105]
    RITCHIE C J, CRAWFORD C R, GODWIN J D, et al. Correction of computed tomography motion artifacts using pixel-specific back-projection[J]. IEEE Transactions on Medical Imaging, 1996, 15(3): 333−342. DOI: 10.1109/42.500142.
    [106]
    ZHANG H, KRUIS M, SONKE J J. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction[J]. Physics in Medicine & Biology, 2017, 62(6): 2254.
    [107]
    MARTIN R, AHMAD M, HUGO G, et al. Iterative volume of interest based 4D cone beam CT[J]. Medical Physics, 2017, 44(12): 6515−6528. DOI: 10.1002/mp.12575.
    [108]
    PARK J C, ZHANG H, CHEN Y, et al. Common-mask-guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography[J]. Physics in Medicine & Biology, 2015, 60(23): 9157.
    [109]
    MORY C, JANSSENS G, RIT S. Motion-aware temporal regularization for improved 4D cone-beam computed tomography[J]. Physics in Medicine & Biology, 2016, 61(18): 6856.
    [110]
    Den OTTER L A, CHEN K, JANSSENS G, et al. 4D cone-beam CT reconstruction from sparse: View CBCT data for daily motion assessment in pencil beam scanned proton therapy (PBS-PT)[J]. Medical Physics, 2020, 47(12): 6381−6387. DOI: 10.1002/mp.14521.
    [111]
    VANDEMEULEBROUCKE J, BERNARD O, RIT S, et al. Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT[J]. Medical Physics, 2012, 39(2): 1006−1015. DOI: 10.1118/1.3679009.
    [112]
    PACK J D, NOO F. Dynamic computed tomography with known motion field[C]//Medical imaging 2004: Image Processing. SPIE, 2004, 5370: 2097-2104.
    [113]
    RIT S, SARRUT D, DESBAT L. Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax[J]. IEEE Transactions on Medical Imaging, 2009, 28(10): 1513−1525. DOI: 10.1109/TMI.2008.2008962.
    [114]
    WANG J, GU X. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT[J]. Medical Physics, 2013, 40(10): 101912. DOI: 10.1118/1.4821099.
    [115]
    Van NIEUWENHOVE V, de BEENHOUWER J, VLASSENBROECK J, et al. MoVIT: A tomographic reconstruction framework for 4D-CT[J]. Optics Express, 2017, 25(16): 19236−19250. DOI: 10.1364/OE.25.019236.
    [116]
    de Schryver T, Dierick M, Heyndrickx M, et al. Motion-compensated micro-CT reconstruction for in-situ analysis of dynamic processes[J]. Scientific Reports, 2018, 8(1): 7655. DOI: 10.1038/s41598-018-25916-5.
    [117]
    HINKLE J, SZEGEDI M, WANG B, et al. 4DCT image reconstruction with diffeomorphic motion model[J]. Medical Image Analysis, 2012, 16(6): 1307−1316. DOI: 10.1016/j.media.2012.05.013.
    [118]
    YAN H, ZHEN X, FOLKERTS M, et al. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging[J]. Medical Physics, 2014, 41(7): 071903. DOI: 10.1118/1.4881326.
    [119]
    McCLELLAND J R, MODAT M, ARRIDGE S, et al. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images[J]. Physics in Medicine & Biology, 2017, 62(11): 4273.
    [120]
    DANG H, WANG A S, SUSSMAN M S, et al. dPIRPLE: A joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images[J]. Physics in Medicine & Biology, 2014, 59(17): 4799.
    [121]
    WU G, LIAN J, SHEN D. Improving image: Guided radiation therapy of lung cancer by reconstructing 4D-CT from a single free-breathing 3D-CT on the treatment day[J]. Medical Physics, 2012, 39(12): 7694−7709. DOI: 10.1118/1.4768226.
    [122]
    REED A W, KIM H, ANIRUDH R, et al. Dynamic CT reconstruction from limited views with implicit neural representations and parametric motion fields[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2258-2268.
    [123]
    ZHANG Y, YIN F F, SEGARS W P, et al. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections[J]. Medical Physics, 2013, 40(12): 121701. DOI: 10.1118/1.4825097.
    [124]
    ZHANG Y, YANG J, ZHANG L, et al. Digital reconstruction of high-quality daily 4D cone-beam CT images using prior knowledge of anatomy and respiratory motion[J]. Computerized Medical Imaging and Graphics, 2015, 40: 30−38. DOI: 10.1016/j.compmedimag.2014.10.007.
    [125]
    DHOU S, HUGO G D, DOCEF A. Motion-based projection generation for 4D-CT reconstruction[C]//2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014: 1698-1702.
    [126]
    BERGNER F, BERKUS T, OELHAFEN M, et al. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT[J]. Medical Physics, 2009, 36(12): 5695−5706. DOI: 10.1118/1.3260919.
    [127]
    GAO H, GUO M, LI R, et al. 4DCT and 4D cone-beam CT reconstruction using temporal regularizations[J]. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy. Series: Series in Medical Physics and Biomedical Engineering, 2015: 63-82.
    [128]
    MASCOLO-FORTIN J, MATENINE D, ARCHAMBAULT L, et al. A fast 4D cone-beam CT reconstruction method based on the OSC-TV algorithm[J]. Journal of X-ray Science and Technology, 2018, 26(2): 189−208. DOI: 10.3233/XST-17289.
    [129]
    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777.
    [130]
    WU H, MAIER A, FAHRIG R, et al. Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction[C]//Medical Imaging 2012: Physics of Medical Imaging. SPIE, 2012, 8313: 1018-1024.
    [131]
    BREDIES K, KUNISCH K, POCK T. Total generalized variation[J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 492−526. DOI: 10.1137/090769521.
    [132]
    ZHANG Y, ZHANG W, LEI Y, et al. Few-view image reconstruction with fractional-order total variation[J]. Journal the Optical Society of America A, 2014, 31(5): 981−995. DOI: 10.1364/JOSAA.31.000981.
    [133]
    GONG C, ZENG L. Adaptive iterative reconstruction based on relative total variation for low-intensity computed tomography[J]. Signal Processing, 2019, 165: 149−162. DOI: 10.1016/j.sigpro.2019.06.031.
    [134]
    RITSCHL L, SAWALL S, KNAUP M, et al. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior[J]. Physics in Medicine & Biology, 2012, 57(6): 1517.
    [135]
    GAO H, LI R, LIN Y, et al. 4D cone beam CT via spatiotemporal tensor framelet[J]. Medical Physics, 2012, 39(11): 6943−6946. DOI: 10.1118/1.4762288.
    [136]
    GAO H, QI X S, GAO Y, et al. Megavoltage CT imaging quality improvement on TomoTherapy via tensor framelets[J]. Medical Physics, 2013, 40(8): 081919. DOI: 10.1118/1.4816303.
    [137]
    HAN H, GAO H, XING L. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation[J]. Physics in Medicine & Biology, 2017, 62(16): 6408.
    [138]
    TIAN Z, JIA X, JIANG S B. GPU-based low-dose 4DCT reconstruction via temporal non-local means[J]. arXiv Preprint arXiv: 1009. 1351, 2010.
    [139]
    JIA X, TIAN Z, LOU Y, et al. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method[J]. Medical Physics, 2012, 39(9): 5592−5602. DOI: 10.1118/1.4745559.
    [140]
    KIM H, CHEN J, WANG A, et al. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction[J]. Physics in Medicine & Biology, 2016, 61(18): 6878.
    [141]
    KAZANTSEV D, GUO E, KAESTNER A, et al. Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction[J]. Journal of X-ray Science and Technology, 2016, 24(2): 207−219. DOI: 10.3233/XST-160546.
    [142]
    GAO H, CAI J F, SHEN Z, et al. Robust principal component analysis-based four-dimensional computed tomography[J]. Physics in Medicine & Biology, 2011, 56(11): 3181.
    [143]
    GAO H, YU H, OSHER S, et al. Multi-energy CT based on a prior rank, intensity, and sparsity models (PRISM)[J]. Inverse Problems, 2011, 27(11): 115012. DOI: 10.1088/0266-5611/27/11/115012.
    [144]
    OTAZO R, CANDES E, SODICKSON D K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[J]. Magnetic Resonance in Medicine, 2015, 73(3): 1125−1136. DOI: 10.1002/mrm.25240.
    [145]
    LINGALA S G, HU Y, DIBELLA E, et al. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1042−1054. DOI: 10.1109/TMI.2010.2100850.
    [146]
    GAO H, LIN H, AHN C B, et al. PRISM: A divide-and-conquer low-rank and sparse decomposition model for dynamic MRI[J]. UCLA Computational and Applied Mathematics Reports, 2011: 11-26.
    [147]
    KIM K S, YE J C. Low-dose limited-view 4DCT reconstruction using patch-based low-rank regularization[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013: 1-4.
    [148]
    CHEN G H, TANG J, LENG S. Prior image-constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection datasets[J]. Medical Physics, 2008, 35(2): 660−663. DOI: 10.1118/1.2836423.
    [149]
    NETT B, TANG J, LENG S, et al. Tomosynthesis via total variation minimization reconstruction and prior image-constrained compressed sensing (PICCS) on a C-arm system[C]//Medical Imaging 2008: Physics of Medical Imaging. SPIE, 2008, 6913: 800-809.
    [150]
    CHEN G H, TANG J, NETT B, et al. Prior image-constrained compressed sensing (PICCS) and applications in X-ray computed tomography[J]. Current Medical Imaging, 2010, 6(2): 119−134. DOI: 10.2174/157340510791268498.
    [151]
    LENG S, TANG J, ZAMBELLI J, et al. High temporal resolution and streak-free four-dimensional cone-beam computed tomography[J]. Physics in Medicine & Biology, 2008, 53(20): 5653.
    [152]
    林嘉慧, 边兆英, 马建华, 等. 数据冗余信息引导的低剂量心肌灌注CT成像方法[J]. 南方医科大学学报, 2018, 38(01): 27−33. DOI: 10.3969/j.issn.1673-4254.2018.01.005.
    [153]
    陶熙. 基于反投影数据分析与时序均值先验的低剂量CT成像新方法研究[D]. 广州:南方医科大学,2020.
    [154]
    CHEN G H, LI Y. Synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON): A statistical model based iterative image reconstruction method to eliminate limited‐view artifacts and to mitigate the temporal‐average artifacts in time-resolved CT[J]. Medical Physics, 2015, 42(8): 4698−4707. DOI: 10.1118/1.4926430.
    [155]
    LI Y, GARRETT J W, LI K, et al. An enhanced SMART-RECON algorithm for time-resolved C-arm cone-beam CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1894−1905.
    [156]
    LI Y, CAO X, XING Z, et al. Image quality improvement in MDCT cardiac imaging via SMART-RECON method[C]//Medical Imaging 2017: Physics of Medical Imaging. SPIE, 2017, 10132: 771-777.
    [157]
    LI Y, SPEIDEL M A, FRANÇOIS C J, et al. Radiation-dose reduction in CT myocardial perfusion imaging using SMART-RECON[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2557−2568. DOI: 10.1109/TMI.2017.2747521.
    [158]
    LI Y, GARRETT J W, LI K, et al. Time-resolved C-arm cone beam CT angiography (TR-CBCTA) imaging from a single short-scan C-arm cone-beam CT acquisition with intra-arterial contrast injection[J]. Physics in Medicine & Biology, 2018, 63(7): 075001.
    [159]
    GAO H, LI L, HU X. Compressive diffusion MRI, Part 3: Prior image constrained low-rank model (PCLR)[C]//Proc ISMRM. Proceedings of ISMRM 2013 Annual Meeting and Exhibition Activity, Salt Lake City, Utah, USA, 2013: 2605.
    [160]
    TUY H K. An inversion formula for cone-beam reconstruction[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 546−552. DOI: 10.1137/0143035.
    [161]
    HANSEN D C, SØRENSEN T S. Fast 4D cone-beam CT from 60s acquisitions[J]. Physics and Imaging in Radiation Oncology, 2018, 5: 69−75. DOI: 10.1016/j.phro.2018.02.004.
    [162]
    ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736−3745. DOI: 10.1109/TIP.2006.881969.
    [163]
    XU Q, YU H, MOU X, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9): 1682−1697. DOI: 10.1109/TMI.2012.2195669.
    [164]
    CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted ℓ 1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14: 877−905. DOI: 10.1007/s00041-008-9045-x.
    [165]
    SIDKY E Y, CHARTRAND R, PAN X. Image reconstruction from few views by non-convex optimization[C]//2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007, 5: 3526-3530.
    [166]
    HUANG J, HUANG X, METAXAS D. Learning with dynamic group sparsity[C]//2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009: 64-71.
    [167]
    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35−45. DOI: 10.1115/1.3662552.
    [168]
    CLARK D P, BADEA C T. Convolutional regularization methods for 4D, X-ray CT reconstruction[C]// Medical Imaging 2019: Physics of Medical Imaging. SPIE, 2019, 10948: 574-585.
    [169]
    MADESTA F, SENTKER T, GAUER T, et al. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction[J]. Medical Physics, 2020, 47(11): 5619−5631. DOI: 10.1002/mp.14441.
    [170]
    HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis[J]. arXiv Preprint, 2016. DOI: 10.48550/arXiv.1611.06391.2016.
    [171]
    XIE S, ZHENG X, CHEN Y, et al. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction[J]. Scientific Reports, 2018, 8(1): 6700. DOI: 10.1038/s41598-018-25153-w.
    [172]
    FU Y, LEI Y, WANG T, et al. Deep learning in medical image registration: A review[J]. Physics in Medicine & Biology, 2020, 65(20): 20TR01.
    [173]
    TENG X, CHEN Y, ZHANG Y, et al. Respiratory deformation registration in 4D-CT/cone beam CT using deep learning[J]. Quantitative Imaging in Medicine and Surgery, 2021, 11(2): 737. DOI: 10.21037/qims-19-1058.
    [174]
    HUANG X, ZHANG Y, CHEN L, et al. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction[J]. Medical Physics, 2020, 47(7): 3000−3012. DOI: 10.1002/mp.14150.
    [175]
    WOLTERINK J, ZWIENENBERG J, BRUNE C. Implicit neural representations for deformable image registration[C]//International Conference on Medical Imaging with Deep Learning. PMLR, 2022: 1349-1359.
    [176]
    HERRMANN J, FONSECA Da CRUZ A, GERARD S E, et al. Dynamic 5DCT Image reconstruction reveals interactions between cardiogenic and respiratory motion[M]//B28. See For Yourself: Evaluating Lung Function with CT and MRI. American Thoracic Society, 2022: A2552-A2552.
    [177]
    JIANG Z, ZHANG Z, CHANG Y, et al. Enhancement of 4-D cone-beam computed tomography (4D-CBCT) using a dual-encoder convolutional neural network (DeCNN)[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 6(2): 222−230.
    [178]
    YANG B, CHEN X, YUAN S, et al. Deep learning improves image quality and radiomics reproducibility for high-speed four-dimensional computed tomography reconstruction[J]. Radiotherapy and Oncology, 2022, 170: 184−189. DOI: 10.1016/j.radonc.2022.02.034.
    [179]
    JIANG Z, CHANG Y, ZHANG Z, et al. Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks[J]. Medical Physics, 2022, 49(10): 6461−6476. DOI: 10.1002/mp.15806.
    [180]
    JUNG S, LEE S, JEON B, et al. Deep learning based coronary artery motion artifact compensation using style-transfer synthesis in CT images[C]//Simulation and Synthesis in Medical Imaging: Third International Workshop, SASHIMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 3. Springer International Publishing, 2018: 100-110.
    [181]
    ELSS T, NICKISCH H, WISSEL T, et al. Motion estimation in coronary CT angiography images using convolutional neural networks[C]//Medical Imaging with Deep Learning, 2018.
    [182]
    GUO Y, BI L, AHN E, et al. A spatiotemporal volumetric interpolation network for 4d dynamic medical image[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4726-4735.
    [183]
    SAUPPE S, KUHM J, BREHM M, et al. Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT[J]. Physics in Medicine & Biology, 2018, 63(3): 035032.
    [184]
    SHIEH C C, GONZALEZ Y, LI B, et al. SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1 min scan[J]. Medical Physics, 2019, 46(9): 3799−3811. DOI: 10.1002/mp.13687.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return