ISSN 1004-4140
CN 11-3017/P
XU C, SHEN Y W, SHI Y Q, et al. Research Progress on Radiology in Spread Through Air Space in Lung Cancer[J]. CT Theory and Applications, 2024, 33(3): 371-376. DOI: 10.15953/j.ctta.2023.140. (in Chinese).
Citation: XU C, SHEN Y W, SHI Y Q, et al. Research Progress on Radiology in Spread Through Air Space in Lung Cancer[J]. CT Theory and Applications, 2024, 33(3): 371-376. DOI: 10.15953/j.ctta.2023.140. (in Chinese).

Research Progress on Radiology in Spread Through Air Space in Lung Cancer

More Information
  • Received Date: July 15, 2023
  • Revised Date: November 05, 2023
  • Accepted Date: November 06, 2023
  • Available Online: December 20, 2023
  • The spread through air space (STAS) in lung cancer refers to the presence of tumor cells in the airway outside the main tumor body in the form of micropapillary cell clusters, solid cell nests, or individual cells. The researches of lung cancer in recent years discover the significant value of STAS for diagnosis, treatment, and prognosis, therefore the World Health Organization designated it as a new invasive pattern of lung adenocarcinoma in 2015. Predicting the presence of STAS by medicine imaging has been the research highlight in recent years. Though the feasibility of predicting STAS by medicine imaging has been confirmed, more in-depth researches are necessary for establishing more reliable and accurate prediction method in medicine imaging. This article reviews the research progresses of pathology, clinical significance and medicine imaging on STAS.

  • [1]
    HYUNA S, JACQUES F, REBECCA S, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. A Cancer Journal for Clinicians, 2021, 71(3): 209−249. DOI: 10.3322/caac.21660.
    [2]
    SHIH A R, MINO-KENUDSON M. Updates on spread through air spaces (STAS) in lung cancer[J]. Histopathology, 2020, 77(2): 173−180. DOI: 10.1111/his.14062.
    [3]
    KODAMA T, KAMEYA T, SHIMOSATO Y, et al. Cell incohesiveness and pattern of extension in a rare case of bronchioloalveolar carcinoma[J]. Ultrastruct Pathol, 1980, 1(2): 177−188. DOI: 10.3109/01913128009141415.
    [4]
    阙敬文, 刘涛, 罗达远, 等. 炎症指标及CT影像学对可手术肺腺癌患者出现气道播散的预测价值[J]. 四川医学, 2022, 43(4): 339−344.

    QUE J W, LIU T, LUO D Y, et al. The predictive value of inflammatory indexes and CT imaging in patients with operable lung adenocarcinoma with spread through air space (STAS)[J]. Sichuan Medical Journal, 2022, 43(4): 339−344. (in Chinese).
    [5]
    曾慧, 谭锋维, 袁振龙, 等. 气腔播散对不同肿瘤大小的pTIN0M0期肺腺癌患者术后无复发生存期的影响分析[J]. 中华医学杂志, 2022, 102(19): 1430−1436. DOI: 10.3760/cma.j.cn112137-20220316-00545.

    ZENG H, TAN F W, YUAN Z L, et al. Analysis of the effect of spread through air spaces on postoperative recurrence-free survival in patients with stage pTIN0M0 lung adenocarcinoma of different tumor size[J]. National Medical Journal of China, 2022, 102(19): 1430−1436. DOI: 10.3760/cma.j.cn112137-20220316-00545. (in Chinese).
    [6]
    张龙富, 刘洁, 倪筝, 等. 构建并验证nomogram模型预测IA期肺腺癌肺泡间转移[J]. 中国癌症杂志, 2022, 32(12): 1210−1217. DOI: 10.3969/j.issn.1007-3639.2022.12.010.

    ZHANG L F, LIU J, NI Z, et al. Development and validation of a nomogram for predicting spread through air spaces in stage IA lung adenocarcinoma[J]. China Oncology, 2022, 32(12): 1210−1217. DOI: 10.3969/j.issn.1007-3639.2022.12.010. (in Chinese).
    [7]
    林琼真, 胡子良, 周戈, 等. CT特征对肺腺癌患者间隙转移风险模型的构建分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(3): 308−311. DOI: 10.3877/cma.j.issn.1674-6902.2021.03.010.

    LIN Q Z, HU Z L, ZHOU G, et al. Construction analysis of CT characteristics of patients with lung adenocarcinoma in the risk model of space metastasis[J]. Chinese Journal of Lung Diseases (Electronic Edition), 2021, 14(3): 308−311. DOI: 10.3877/cma.j.issn.1674-6902.2021.03.010. (in Chinese).
    [8]
    METOVIC J, FALCO E C, VISSIO E, et al. Gross specimen handling procedures do not impact the occurrence of spread through air spaces (STAS) in lung cancer[J]. The American Journal of Surgical Pathology, 2021, 45(2): 215−222. DOI: 10.1097/PAS.0000000000001642.
    [9]
    LU S, REKHTMAN N, EGUCHI T, et al. P3.01-029 cases demonstrating spread through air spaces (STAS) reflects invasive growth and not an artifact: Topic: Morphology[J]. Journal of Thoracic Oncology, 2017, 12(1): S1137.
    [10]
    BLAAUWGEERS H, FLIEDER D, WARTH A, et al. A prospective study of loose tissue fragments in non-small cell lung cancer resection specimens an alternative view to "spread through air spaces"[J]. American Journal of Surgical Pathology, 2017, 41(9): 1226−1230. DOI: 10.1097/PAS.0000000000000889.
    [11]
    VILLALBAL J A, SHIH A R, SAYO T M S, et al. Accuracy and reproducibility of intraoperative assessment on tumor spread through air spaces in stage I lung adenocarcinomas[J]. Journal of Thoracic Oncology, 2021, 16(4): 619−629. DOI: 10.1016/j.jtho.2020.12.005.
    [12]
    WALTS A E, MARCHEVSKY A M. Current evidence does not warrant frozen section evaluation for the presence of tumor spread through alveolar spaces[J]. Archives of Pathology & Laboratory Medicine, 2018, 142(1): 59−63.
    [13]
    ZHOU F, VILLALBA J A, SAYO T M S, et al. Assessment of the feasibility of frozen sections for the detection of spread through air spaces (STAS) in pulmonary adenocarcinoma[J]. Modern Pathology, 2022, 35(2): 210−217. DOI: 10.1038/s41379-021-00875-x.
    [14]
    MEDINA M A, ONKEN A M, MARGERIE-MELLON C D, et al. Preoperative bronchial cytology for the assessment of tumor spread through air spaces in lung adenocarcinoma resection specimens[J]. Modern Pathology, 2020, 128(4): 278−286.
    [15]
    ISAKA T, YOKOSE T, MIYAGI Y, et al. Detection of tumor spread through airspaces by airway secretion cytology from resected lung cancer specimens[J]. Pathology International, 2017, 67(10): 487−494. DOI: 10.1111/pin.12570.
    [16]
    QI L, XUE K, CAI Y, et al. Predictors of CT morphologic features to identify spread through air spaces preoperatively in small-sized lung adenocarcinoma[J]. Frontiers in Oncology, 2020, 10: 548430.
    [17]
    QI L, LI X, HE L, et al. Comparison of diagnostic performance of spread through airspaces of lung adenocarcinoma based on morphological analysis and perinodular and intranodular radiomic features on chest CT images[J]. Frontiers in Oncology, 2021, 11: 654413. DOI: 10.3389/fonc.2021.654413.
    [18]
    QIN L, SUN Y, ZHU R, et al. Clinicopathological and CT features of tumor spread through air space in invasive lung adenocarcinoma[J]. Frontiers in Oncology, 2022, 12: 959113. DOI: 10.3389/fonc.2022.959113.
    [19]
    KIM S K, KIM T J, CHUNG M J, et al. Lung adenocarcinoma: CT features associated with spread through air spaces[J]. Radiology, 2018, 289(3): 831−840. DOI: 10.1148/radiol.2018180431.
    [20]
    CHEN D, SHE Y, WANG T, et al. Radiomics-based prediction for tumour spread through air spaces in stage I lung adenocarcinoma using machine learning[J]. European Journal of Cardio-Thoracic Surgery, 2020, 58(1): 51−58. DOI: 10.1093/ejcts/ezaa011.
    [21]
    LEE M A, KANG J, LEE H Y, et al. Spread through air spaces (STAS) in invasive mucinous adenocarcinoma of the lung: Incidence, prognostic impact, and prediction based on clinicoradiologic factors[J]. Thoracic Cancer, 2020, 11(11): 3145−3154. DOI: 10.1111/1759-7714.13632.
    [22]
    de MARGERIE-MELLON C, ONKEN A, HEIDINGER B H, et al. CT manifestations of tumor spread through airspaces in pulmonary adenocarcinomas presenting as subsolid nodules[J]. Journal of Thoracic Imaging, 2018, 33(6): 402−408. DOI: 10.1097/RTI.0000000000000344.
    [23]
    孙平丽, 刘京男, 曹岚清, 等. 气腔内播散与肺腺癌患者临床病理学特征及预后之间的相关性分析[J]. 中华病理学杂志, 2017, 46(5): 303−308. DOI: 10.3760/cma.j.issn.0529-5807.2017.05.004.

    SUN P L, LIU J N, CAO L Q, et al. To evaluate the clinicopathologic characteristics and outcome of tumor cells spreading through air spaces in patients with adenocarcinoma of lung[J]. Chinese Journal of Pathology, 2017, 46(5): 303−308. DOI: 10.3760/cma.j.issn.0529-5807.2017.05.004. (in Chinese).
    [24]
    SHIONO S, YANAGAWA N. Spread through air spaces is a predictive factor of recurrence and a prognostic factor in stage I lung adenocarcinoma[J]. Interactive Cardiovascular and Thoracic Surgery, 2016, 23(4): 567−572. DOI: 10.1093/icvts/ivw211.
    [25]
    ZHUO Y, FENG M, YANG S, et al. Radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of spread through air spaces in lung adenocarcinoma[J]. Translational Oncology, 2020, 13(10): 100820. DOI: 10.1016/j.tranon.2020.100820.
    [26]
    JIANG C, LUO Y, YUAN J, et al. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma[J]. European Radiology, 2020, 30(7): 4050−4057. DOI: 10.1007/s00330-020-06694-z.
    [27]
    LI C, JIANG C, GONG J, et al. A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(10): 1984−1993. DOI: 10.21037/qims-20-724.
    [28]
    HAN X, FAN J, ZHENG Y, et al. The value of CT-based radiomics for predicting spread through air spaces in stage IA lung adenocarcinoma[J]. Frontiers in Oncology, 2022, 12: 757389. DOI: 10.3389/fonc.2022.757389.
    [29]
    TOYOKAWA G, YAMADA Y, TAGAWA T, et al. Computed tomography features of resected lung adenocarcinomas with spread through air spaces[J]. Annals of Thoracic Surgery, 2018, 156(4): 1670−1676.
    [30]
    TAKEHANA K, SAKAMOTO R, FUJIMOTO K, et al. Peritumoral radiomics features on preoperative thin-slice CT images can predict the spread through air spaces of lung adenocarcinoma[J]. Scientific Reports, 2022, 12(1): 10323. DOI: 10.1038/s41598-022-14400-w.
    [31]
    ONOZATO Y, NAKAJIMA T, YOKOTA H, et al. Radiomics is feasible for prediction of spread through air spaces in patients with nonsmall cell lung cancer[J]. Scientific Reports, 2021, 11(1): 13526. DOI: 10.1038/s41598-021-93002-4.
    [32]
    ZHANG Z, LIU Z, FENG H, et al. Predictive value of radiological features on spread through air space in stage cIA lung adenocarcinoma[J]. Journal of Thoracic Disease, 2020, 12(11): 6494−6504. DOI: 10.21037/jtd-20-1820.
    [33]
    CHEN Y, JIANG C, KANG W, et al. Development and validation of a CT-based nomogram to predict spread through air space (STAS) in peripheral stage IA lung adenocarcinoma[J]. Japanese Journal of Radiology, 2022, 40(6): 586−594. DOI: 10.1007/s11604-021-01240-3.
    [34]
    YIN Q, WANG H, CUI H, et al. Meta-analysis of association between CT-based features and tumor spread through air spaces in lung adenocarcinoma[J]. Journal of Cardiothoracic Surgery, 2020, 15(1): 243. DOI: 10.1186/s13019-020-01287-9.
    [35]
    吴越, 范力文, 谭明瑜, 等. 老年肺腺癌患者肿瘤经气道播散的CT特征[J]. 中国老年学杂志, 2020, 40(17): 3626−3629. DOI: 10.3969/j.issn.1005-9202.2020.17.014.
    [36]
    尹柯, 巴文娟, 陶俊利, 等. 双能量CT定量参数预测实性肺腺癌气道播散[J]. 中国医学影像技术, 2022, 38(10): 1514−1518.

    YIN K, BA W J, TAO J L, et al. Dual-energy CT quantitative parameters for predicting spreading through air spaces of solid lung adenocarcinoma[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(10): 1514−1518. (in Chinese).
    [37]
    LIU Q, QI W, WU Y, et al. Construction of pulmonary nodule CT radiomics random forest model based on artificial intelligence software for STAS evaluation of stage IA lung adenocarcinoma[J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 2173412.
    [38]
    BASSI M, RUSSOMANDO A, VANNUCCI J, et al. Role of radiomics in predicting lung cancer spread through air spaces in a heterogeneous dataset[J]. Translational Lung Cancer Research, 2022, 11(4): 560−571. DOI: 10.21037/tlcr-21-895.
    [39]
    LIAO G Q, HUANG L, WU S, et al. Preoperative CT-based peritumoral and tumoral radiomic features prediction for tumor spread through air spaces in clinical stage I lung adenocarcinoma[J]. Lung Cancer, 2022, 163: 87−95. DOI: 10.1016/j.lungcan.2021.11.017.
    [40]
    FALAY O, SELCUKBIRICIK F, TANJU S, et al. The prediction of spread through air spaces with preoperative 18F-FDG PET/CT in cases with primary lung adenocarcinoma, its effect on the decision for an adjuvant treatment and its prognostic role[J]. Nuclear Medicine Communications, 2021, 42(8): 922−927. DOI: 10.1097/MNM.0000000000001414.
    [41]
    NISHIMORI M, IWASA H, MIYATAKE K, et al. 18F-FDG PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma[J]. Annals of Nuclear Medicine, 2022, 36(10): 897−903. DOI: 10.1007/s12149-022-01773-1.
    [42]
    SUH J W, JEONG Y H, CHO A, et al. Stepwise flowchart for decision making on sublobar resection through the estimation of spread through air space in early stage lung cancer[J]. Lung Cancer, 2020, 142: 28−33. DOI: 10.1016/j.lungcan.2020.02.001.
  • Related Articles

    [1]ZHOU Jie, ZHENG Yanting, JIANG Shuqi, AN Jie, QIU Shijun, CHEN Huai. Machine Learning Prediction Models for Staging of Non-small Cell Lung Cancer Patients Using Radiomics[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.186
    [2]RONG Ping, LI Ming, YANG Shangwen, XIN Xiaoyan, YANG Wen, FENG Qianqian, CHEN Wenqian, LIU Renyuan, YAO Mei. MRI Study on the Effects of Platinum-based Chemotherapy on Brain Lateralization in Patients with Lung Cancer[J]. CT Theory and Applications, 2025, 34(3): 447-454. DOI: 10.15953/j.ctta.2025.025
    [3]XU Chi, GONG Jingjing, GU Xinru, Li Ming, LIU Kefu. Predictive Values of Quantitative Computed Tomography Parameters for Spread Through Air Spaces in Patients with Invasive Lung Adenocarcinoma[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.118
    [4]BA Wenjuan, ZHU Yanlin, WEI Mei, YIN Ke. Advances in the Preoperative Prediction of the Spread of Lung Adenocarcinoma Through Air Spaces Using CT Features[J]. CT Theory and Applications, 2024, 33(1): 91-96. DOI: 10.15953/j.ctta.2022.236
    [5]MENG Hongjia, CHEN Xiaojuan, HUANG Junjie, HE Xiaoxue, CHEN Huai. Clinicopathological and CT Findings of Cystic Lung Cancer[J]. CT Theory and Applications, 2023, 32(1): 97-104. DOI: 10.15953/j.ctta.2022.014
    [6]LIU Li-juan, ZHAO Lei, LIU Ai-shi. The Research Progress in Imaging Evaluation of Efficacy of Radiotherapy and Chemotherapy for Central Lung Cancer[J]. CT Theory and Applications, 2018, 27(6): 805-812. DOI: 10.15953/j.1004-4140.2018.27.06.15
    [7]BAO Ya-hong, CHENG Gang. CT Diagnosis and Follow-up Analysis of Lung Cancer as Ground-glass Opacity[J]. CT Theory and Applications, 2016, 25(2): 219-225. DOI: 10.15953/j.1004-4140.2016.25.02.13
    [8]YU Hua-yan. The Value of CT Imaging Spectroscopy Quantitative Analysis in the Differential Diagnosis of Peripheral Lung Cancer and Pneumonia Mass[J]. CT Theory and Applications, 2016, 25(2): 135-140. DOI: 10.15953/j.1004-4140.2016.25.02.02
    [9]WANG Su, LI Zhong-kai, ZHANG Li-bo, MENG Song-wei, LI Peng, WANG Zhong-wei. On Using Low-does CT to Screen Primary Asymptomatic Lung Cancer[J]. CT Theory and Applications, 2010, 19(3): 83-91.
    [10]LI Xiao-peng, GAO Bin. Molecular Biology Factors of Lung Cancer and Radiology[J]. CT Theory and Applications, 2008, 17(3): 36-43.

Catalog

    Article views (237) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return