Citation: | ZHOU H, FENG F. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155. (in Chinese). |
Esophageal cancer, a malignant tumor with devastatingly high incidence and mortality rates, necessitates prompt efficacy evaluation and accurate prognosis prediction. Radiomics is an algorithmic approach that extracts insightful quantitative parameters from medical images, offering a trove of high-throughput imaging features. This technology demonstrates significant predictive value in esophageal cancer, holding immense promise for personalized treatment and patient evaluation. This article delves into the latest research advancements of computed tomography radiomics in both prognosis prediction and efficacy evaluation of this aggressive disease.
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA a Cancer Journal for Clinicians, 2021, 71(3): 209−249. DOI: 10.3322/caac.21660.
|
[2] |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA a Cancer Journal for Clinicians, 2023, 73(1): 17−48. DOI: 10.3322/caac.21763.
|
[3] |
RUAN R, CHEN S, TAO Y, et al. A nomogram for predicting lymphovascular invasion in superficial esophageal squamous cell carcinoma[J]. Front Oncol, 2021, 11: 663802. DOI: 10.3389/fonc.2021.663802.
|
[4] |
PENG H, YANG Q, XUE T, et al. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma[J]. The British Journal of Radiology, 2022, 95(1130): 20210918. DOI: 10.1259/bjr.20210918.
|
[5] |
MAO Q, ZHOU M T, ZHAO Z P, et al. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer[J]. World Journal of Gastroenterology, 2022, 28(42): 6002−6016. DOI: 10.3748/wjg.v28.i42.6002.
|
[6] |
CAO B, MI K, DAI W, et al. Prognostic and incremental value of computed tomography-based radiomics from tumor and nodal regions in esophageal squamous cell carcinoma[J]. Chinese Journal of Cancer Researc, 2022, 34(2): 71−82.
|
[7] |
CUI Y, LI Z, XIANG M, et al. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures[J]. Radiation Oncology, 2022, 17(1): 212. DOI: 10.1186/s13014-022-02186-0.
|
[8] |
ZHU C, MU F, WANG S, et al. Prediction of distant metastasis in esophageal cancer using a radiomics-clinical model[J]. European Journal of Medical Research, 2022, 27(1): 272. DOI: 10.1186/s40001-022-00877-8.
|
[9] |
PENG H, XUE T, CHEN Q, et al. Computed tomography-based radiomics nomogram for predicting the postoperative prognosis of esophageal squamous cell carcinoma: A multicenter study[J]. Academic Radiology, 2022, S1076-6332(22): 00070−8.
|
[10] |
莫笑开, 林少帆, 伍光恒, 等. CT影像组学模型对食管癌术后个体化辅助治疗的评估价值[J]. 暨南大学学报(自然科学与医学版), 2022, 43(3): 302−311.
MO X K, LIN S F, WU G H, et al. Evaluation value of CT imaging model for individualized adjuvant therapy after esophageal cancer surgery[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2022, 43(3): 302−311. (in Chinese).
|
[11] |
GONG J, ZHANG W, HUANG W, et al. CT-based radiomics nomogram may predict local recurrence-free survival in esophageal cancer patients receiving definitive chemoradiation or radiotherapy: A multicenter study[J]. Radiotherapy and Oncology, 2022, 174: 8−15. DOI: 10.1016/j.radonc.2022.06.010.
|
[12] |
TANG S, QU J, WU Y P, et al. Contrast-enhanced CT radiomics features to predict recurrence of locally advanced oesophageal squamous cell cancer within 2 years after trimodal therapy: A case-control study[J]. Medicine (Baltimore), 2021, 100(27): e26557. DOI: 10.1097/MD.0000000000026557.
|
[13] |
QIU Q, DUAN J, DENG H, et al. Development and validation of a radiomics nomogram model for predicting postoperative recurrence in patients with esophageal squamous cell cancer who achieved pCR after neoadjuvant chemoradiotherapy followed by surgery[J]. Frontiers in Oncology, 2020, 10: 1398. DOI: 10.3389/fonc.2020.01398.
|
[14] |
HOEPPNER J, KULEMANN B. Circulating tumor cells in esophageal cancer[J]. Oncology Research and Treatment, 2017, 40(7/8): 417−422.
|
[15] |
NOONE A M, CRONIN K A, ALTEKRUSE S F, et al. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992-2013[J]. Cancer Epidemiology, Biomarkers & Prevention, 2017, 26(4): 632-641.
|
[16] |
ZHANG H L, CHEN L Q, LIU R L, et al. The number of lymph node metastases influences survival and International Union Against Cancer tumor-node-metastasis classification for esophageal squamous cell carcinoma[J]. Diseases of the Esophagus, 2010, 23(1): 53−58. DOI: 10.1111/j.1442-2050.2009.00971.x.
|
[17] |
KAYANI B, ZACHARAKIS E, AHEMD K, et al. Lymph node metastases and prognosis in oesophageal carcinoma: A systematic review[J]. European Journal of Surgical Oncology, 2011, 37(9): 747-753.
|
[18] |
SHEN C, LIU Z, WANG Z, et al. Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction[J]. Translational Oncology, 2018, 11(3): 815−824. DOI: 10.1016/j.tranon.2018.04.005.
|
[19] |
TAN X, MA Z, YAN L, et al. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma[J]. European Radiology, 2019, 29(1): 392−400.
|
[20] |
PENG G, ZHAN Y, WU Y, et al. Radiomics models based on CT at different phases predicting lymph node metastasis of esophageal squamous cell carcinoma (GASTO-1089)[J]. Frontiers in Oncology, 2022, 12: 988859. DOI: 10.3389/fonc.2022.988859.
|
[21] |
SHEIKH M, ROSHANDEL G, McCORMACK V, et al. Current status and future prospects for esophageal cancer[J]. Cancers (Basel), 2023, 15(3): 765.
|
[22] |
YANG H, LIU H, CHEN Y, et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial[J]. Journal of Clinical Oncology, 2018, 36(27): 2796−2803. DOI: 10.1200/JCO.2018.79.1483.
|
[23] |
SHAPIRO J, Van LANSCHOT J J B, HULSHOF M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial[J]. The Lancet: Oncology, 2015, 16(9): 1090−1098. DOI: 10.1016/S1470-2045(15)00040-6.
|
[24] |
EYCK B M, Van LANSCHOT J J B, HULSHOF M, et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial[J]. Journal of Clinical Oncology, 2021, 39(18): 1995−2004. DOI: 10.1200/JCO.20.03614.
|
[25] |
LARUE R, KLAASSEN R, JOCHEMS A, et al. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer[J]. Acta Oncologica, 2018, 57(11): 1475−1481. DOI: 10.1080/0284186X.2018.1486039.
|
[26] |
宫悦, 胡逸凡, 夏茜, 等. CT影像组学联合炎症指标构建逻辑回归模型预测食管鳞癌新辅助化疗疗效[J]. 放射学实践, 2022, 37(12): 1474−1479.
GONG Y, HU Y F, XIA Q, et al. CT imaging combined with inflammatory indicators to construct a logistic regression model to predict the efficacy of neoadjuvant chemotherapy for esophageal squamous cell carcinoma[J]. Radiological Practice, 2022, 37(12): 1474−1479. (in Chinese).
|
[27] |
HU Y, XIE C, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J]. JAMA Network Open, 2020, 3(9): e2015927. DOI: 10.1001/jamanetworkopen.2020.15927.
|
[28] |
AJANI J A, D'AMICO T A, BENTREM D J, et al. Esophageal and esophagogastric junction cancers, version 2. 2019, NCCN clinical practice guidelines in oncology[J]. Journal of the National Comprehensive Cancer Network, 2019, 17(7): 855-883.
|
[29] |
LUO H S, HUANG S F, XU H Y, et al. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer[J]. Radiation Oncology, 2020, 15(1): 249. DOI: 10.1186/s13014-020-01692-3.
|
[30] |
JIN X, ZHENG X, CHEN D, et al. Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics[J]. European Radiology, 2019, 29(11): 6080−6088.
|
[31] |
SIHAG S, KU G Y, TAN K S, et al. Safety and feasibility of esophagectomy following combined immunotherapy and chemoradiotherapy for esophageal cancer[J]. The Journal of Thoracic and Cardiovascular Surgery, 2021, 161(3): 836-843.
|
[32] |
ZHU Y, YAO W, XU B C, et al. Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive radiomic biomarkers[J]. BMC Cancer, 2021, 21(1): 1167. DOI: 10.1186/s12885-021-08899-x.
|
1. |
秦慧琳,欧静,苟月芹,王悦苏,罗慧,张小明,付茂勇,陈天武. CT影像组学术前预测可切除性食管胃结合部腺癌区域淋巴结转移的研究. CT理论与应用研究(中英文). 2025(03): 427-438 .
![]() |