ISSN 1004-4140
CN 11-3017/P
MA L, HUANG D H, WANG Y F. Predicting Lung Nodule Growth with Shape Transformation and Texture Learning[J]. CT Theory and Applications, 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167. (in Chinese).
Citation: MA L, HUANG D H, WANG Y F. Predicting Lung Nodule Growth with Shape Transformation and Texture Learning[J]. CT Theory and Applications, 2024, 33(3): 317-324. DOI: 10.15953/j.ctta.2023.167. (in Chinese).

Predicting Lung Nodule Growth with Shape Transformation and Texture Learning

More Information
  • Received Date: August 28, 2023
  • Revised Date: December 21, 2023
  • Accepted Date: December 24, 2023
  • Available Online: January 29, 2024
  • While artificial intelligence has achieved considerable maturity in lung nodule detection, research on growth prediction remains limited. Accurate growth prediction aids clinical decision-making, informing patient follow-up strategies. This paper proposes a novel nodule growth prediction network model that generates high-quality lung nodule images at specific time intervals. The model employs a two-branch structure for feature extraction. One branch, leveraging a displacement field prediction mechanism, models the shape transformation of pulmonary nodules through voxel-level future displacement estimation. The other branch, empowered by a three-dimensional U-Net, focused on learning texture changes within the nodules. A coordinate attention mechanism that emphasizes informative features within the extracted high-dimensional feature map. Subsequently, the outputs of both branches are fused and fed into the feature reconstruction module to generate the final lung nodule growth prediction image. Furthermore, a time interval coding module is introduced to incorporate the desired time interval into the network, enabling the generation of prediction images for different future time points.

  • [1]
    OUDKERK M, LIU S, HEUVELMANS M A, et al. Lung cancer LDCT screening and mortality reduction: Evidence, pitfalls and future perspectives[J]. Nature Reviews (Clinical Oncology), 2021, 18(3): 135−151. DOI: 10.1038/s41571-020-00432-6.
    [2]
    SHEN W, ZHOU M, YANG F, et al. Multi-scale Convolutional Neural Networks for lung nodule Classication[C]//Information Processing in Medical Imaging: 24th International Conference, UK: Springer, 2015: 588-599.
    [3]
    SHEN W, ZHOU M, YANG F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J]. Pattern Recognition, 2017, 61: 663−673. DOI: 10.1016/j.patcog.2016.05.029.
    [4]
    ZHANG L, LU L, SUMMERS R M, et al. Convolutional invasion and expansion networks for tumor growth prediction[J]. IEEE Transactions on Medical Imaging, 2018, 37(2): 638-648.
    [5]
    RAFAEL-PALOU X, AUBANELL A, BONAVITA I, et al. Re-identification and growth detection of pulmonary nodules without image registration using 3D siamese neural networks[J]. Medical Image Analysis, 2021, 67: 101823. DOI: 10.1016/j.media.2020.101823.
    [6]
    SHENG J, LI Y, CAO G, et al. Modeling nodule growth via spatial transformation for follow-up prediction and diagnosis[C]//2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021: 1-7.
    [7]
    LI Y, YANG J, XU Y, et al. Learning tumor growth via follow-up volume prediction for lung nodules[C]//Proceedings of the 23th International Conference on Medical Image Computing and Computer-assisted Intervention. Peru: Springer, 2020: 508-517.
    [8]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015: 234-241.
    [9]
    BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019: 1788-1800. DOI: 10.1109/TMI.2019.2897538.
    [10]
    HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011−2023. DOI: 10.1109/TPAMI.2019.2913372.
    [11]
    唐秉航, 王艳芳, 马力, 等. 基于混合注意力机制的肺结节假阳性降低[J]. CT理论与应用研究, 2022, 31(1): 63−72. DOI: 10.15953/j.ctta.2021.002.

    TANG B H, WANG Y F, MA L, et al. False positive reduction of pulmonary nodules based on mixed attentional mechanism[J]. CT Theory and Applications, 2022, 31(1): 63−72. DOI: 10.15953/j.ctta.2021.002. (in Chinese).
    [12]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [13]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600−612. DOI: 10.1109/TIP.2003.819861.
  • Cited by

    Periodical cited type(4)

    1. 黄费湘. 多层螺旋CT多平面重建技术与数字化X线摄影对尘肺患者的诊断及其征象分析. 现代医用影像学. 2024(06): 1025-1027 .
    2. 年洪慧. 青海省海西州尘肺病主要特征及其CT影像表现分析. 实用医学影像杂志. 2024(03): 175-178 .
    3. 周琅,袁梅,谢丽庄,韩磊,鲁珊珊. 尘肺病患者肺部CT特征与肺功能关联性研究进展. 职业卫生与应急救援. 2024(05): 676-679 .
    4. 黄宁,伍武,黄建桂. MSCT对粉尘作业引起的肺部弥漫性小结节的诊断及随访价值研究. 中国现代药物应用. 2023(24): 69-72 .

    Other cited types(1)

Catalog

    Article views (154) PDF downloads (35) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return