ISSN 1004-4140
CN 11-3017/P
WANG X B, E L N. Imaging of Sarcopenia in Rheumatoid Arthritis: State of the Art[J]. CT Theory and Applications, 2024, 33(2): 235-242. DOI: 10.15953/j.ctta.2023.168. (in Chinese).
Citation: WANG X B, E L N. Imaging of Sarcopenia in Rheumatoid Arthritis: State of the Art[J]. CT Theory and Applications, 2024, 33(2): 235-242. DOI: 10.15953/j.ctta.2023.168. (in Chinese).

Imaging of Sarcopenia in Rheumatoid Arthritis: State of the Art

More Information
  • Received Date: August 29, 2023
  • Accepted Date: December 12, 2023
  • Available Online: December 19, 2023
  • Early-stage rheumatoid arthritis (RA) often harbors a hidden threat: sarcopenia, a silent contributor to osteoporosis and fractures. Assessing muscle mass and quality, particularly during active RA periods when joint mobility hinders strength and function evaluations, becomes crucial. Imaging techniques emerge as invaluable tools in this diagnostic puzzle, offering accurate quantification of muscle status in RA patients. This article delves into advancements of various imaging modalities in unraveling RA-related sarcopenia.

  • [1]
    耿研, 谢希, 王昱, 等. 类风湿关节炎诊疗规范[J]. 中华内科杂志, 2022, 61(1): 51−59. DOI: 10.3760/cma.j.cn112138-20210616-00426.

    GENG Y, XIE X, WANG Y, et al. The standardized diagnosis and treatment of rheumatoid arthritis[J]. Chinese Journal of Internal Medicine, 2022, 61(1): 51−59. DOI: 10.3760/cma.j.cn112138-20210616-00426. (in Chinese).
    [2]
    JIN S, LI M, FANG Y, et al. Chinese Registry of rheumatoid arthritis (CREDIT): II. prevalence and risk factors of major comorbidities in Chinese patients with rheumatoid arthritis[J]. Arthritis research & therapy, 2017, 19(1): 1−8. DOI: 10.1186/s13075-017-1457-z.
    [3]
    AN H J, TIZAOUI K, TERRAZZINO S, et al. Sarcopenia in autoimmune and rheumatic diseases: A comprehensive review[J]. International Journal of Molecular Sciences, 2020, 21(16): 5678. DOI:10.3390/ ijms21165678.
    [4]
    ROSENBERG, IRWIN H. Symposium: arcopenia: diagnosis and mechanisms sarcopenia: origins and clinical relevance[J]. Journal of Nutrition, 1997, 127(5): 990S−991S. DOI: 10.1093/jn/127.5.990S.
    [5]
    TONG J, XU S, WANG J, et al. Interactive effect of sarcopenia and falls on vertebral osteoporotic fracture in patients with rheumatoid arthritis[J]. Archives of Osteoporosis, 2021, 16(1): 1−9. DOI: 10.1007/s11657-021-01017-1.
    [6]
    TADA M, YAMADA Y, MANDAI K, et al. Osteosarcopenia synergistically increases the risk of falls in patients with rheumatoid arthritis[J]. Osteoporosis and Sarcopenia, 2021, 7(4): 140−145. DOI: 10.1016/j.afos.2021.11.002.
    [7]
    ANDONIAN B J, HUFFMAN K M. Skeletal muscle disease in rheumatoid arthritis: The center of cardiometabolic comorbidities?[J]. Current Opinion in Rheumatology, 2020, 32(3): 297−306. DOI:10.1097/ BOR.0000000000000697.
    [8]
    CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age and Ageing, 2010, 39(4): 412−423. DOI: 10.1093/ageing/afy169.
    [9]
    CORREA-de-ARAUJO R, ADDISON O, MILJKOVIC I, et al. Myosteatosis in the context of skeletal muscle function deficit: An interdisciplinary workshop at the national institute on aging[J]. Frontiers in Physiology, 2020, 11: 963. DOI: 10.3389/fphys.2020.00963.
    [10]
    FARROW M, BIGLANDS J, TANNER S, et al. Muscle deterioration due to rheumatoid arthritis: Assessment by quantitative MRI and strength testing[J]. Rheumatology, 2021, 60(3): 1216−1225. DOI: 10.1093/rheumatology/keaa364.
    [11]
    LETAROUILLY J G, FLIPO R M, CORTET B, et al. Body composition in patients with rheumatoid arthritis: A narrative literature review[J]. Therapeutic Advances in Musculoskeletal Disease, 2021, 13: 1759720X211015006. DOI: 10.1177/1759720X211015006.
    [12]
    SHIN A, CHOI S R, HAN M, et al. Association between sarcopenia defined as low lean mass by dual-energy X-ray absorptiometry and comorbidities of rheumatoid arthritis: Results of a nationwide cross-sectional health examination[J/OL]. Seminars in Arthritis and Rheumatism, 2022, 57: 152090. DOI: 10.1016/j.semarthrit.2022.152090.
    [13]
    MOSCHOU D, KRIKELIS M, GEORGAKOPOULOS C, et al. Sarcopenia in rheumatoid arthritis: A narrative review[J/OL]. Journal of Frailty, Sarcopenia and Falls, 2023, 8(1): 44-52. DOI: 10.22540/JFSF-08-044.
    [14]
    BHASIN S, TRAVISON T G, MANINI T M, et al. Sarcopenia definition: The position statements of the sarcopenia definition and outcomes consortium[J]. Journal of the American Geriatrics Society, 2020, 68(7): 1410−1418. DOI: 10.1111/jgs.16372.
    [15]
    TOLONEN A, PAKARINEN T, SASSI A, et al. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review[J]. European Journal of Radiology, 2021, 145: 109943. DOI: 10.1016/j.ejrad.2021.109943.
    [16]
    KHOJA S S, PATTERSON C G, GOODPASTER B H, et al. Skeletal muscle fat in individuals with rheumatoid arthritis compared to healthy adults[J]. Experimental Gerontology, 2020, 129: 110768. DOI: 10.1016/j.exger.2019.110768.
    [17]
    DERSTINE B A, HOLCOMBE S A, ROSS B E, et al. Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population[J]. Scientific Reports, 2018, 8(1): 1−8. DOI: 10.1038/s41598-018-29825-5.
    [18]
    MOLWITZ I, LEIDERER M, McDONOUGH R, et al. Skeletal muscle fat quantification by dual-energy computed tomography in comparison with 3T MR imaging[J]. European Radiology, 2021, 31(10): 7529−7539. DOI: 10.1007/s00330-021-07820-1.
    [19]
    VILLEDON de NAIDE M, PEREIRA B, COURTEIX D, et al. Assessment of intramuscular fat and correlation with body composition in patients with rheumatoid arthritis and spondyloarthritis: A pilot study[J]. Nutrients, 2021, 13(12): 4533. DOI: 10.3390/nu13124533.
    [20]
    ROOS F, FANKHAUSER N, COLLET T H, et al. Peripheral volumetric muscle area and total body volume in postmenopausal women with rheumatoid arthritis[J]. Journal of Clinical Densitometry, 2021, 24(4): 613−621. DOI: 10.1016/j.jocd.2020.11.004.
    [21]
    CHOW S K H, van MOURIK M, HUNG V W Y, et al. Hr-pqct for the evaluation of muscle quality and intramuscular fat infiltration in ageing skeletal muscle[J]. Journal of Personalized Medicine, 2022, 12(6): 1016. DOI: 10.3390/jpm12061016.
    [22]
    HINKLEY J M, CORNNELL H H, STANDLEY R A, et al. Older adults with sarcopenia have distinct skeletal muscle phosphodiester, phosphocreatine, and phospholipid profiles[J]. Aging Cell, 2020, 19(6): e13135. DOI: 10.1111/acel.13135.
    [23]
    IWAYAMA K, TANABE Y, TANJI F, et al. Diurnal variations in muscle and liver glycogen differ depending on the timing of exercise[J]. The Journal of Physiological Sciences, 2021, 71(1): 1−8. DOI: 10.1186/s12576-021-00821-1.
    [24]
    FRIEDBERGER A, FIGUEIREDO C, GRIMM A, et al. Quantification of hand muscle volume and composition in patients with rheumatoid arthritis, psoriatic arthritis and psoriasis[J]. BMC Musculoskeletal Disorders, 2020, 21(1): 1−11. DOI: 10.1186/s12891-020-03194-5.
    [25]
    RAN J, DAI B, LIU C, et al. The diagnostic value of T2 map, diffusion tensor imaging, and diffusion kurtosis imaging in differentiating dermatomyositis from muscular dystrophy[J]. Acta Radiologica, 2022, 63(4): 467−473. DOI: 10.1177/0284185121999006.
    [26]
    KENNEDY P, BARNHILL E, GRAY C, et al. Magnetic resonance elastography (MRE) shows significant reduction of thigh muscle stiffness in healthy older adults[J]. GeroScience, 2020, 42(1): 311−321. DOI: 10.1007/s11357-019-00147-2.
    [27]
    PERKISAS S, BAUDRY S, BAUER J, et al. Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements[J]. European Geriatric Medicine, 2018, 9(6): 739−757. DOI: 10.1007/s41999-018-0104-9.
    [28]
    PERKISAS S, BASTIJNS S, BAUDRY S, et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update[J]. European Geriatric Medicine, 2021, 12(1): 45−59 DOI: 10.1007/s41999-020-00433-9.
    [29]
    NIES I, ACKERMANS L, POEZE M, et al. The diagnostic value of ultrasound of the rectus femoris for the diagnosis of sarcopenia in adults: A systematic review[J]. Injury, 2022, 53: 23−29. DOI: 10.1016/j.injury.2022.06.004.
    [30]
    BARBOSA-SILVA T G, GONZALEZ M C, BIELEMANN R M, et al. 2+2(+2)=4: A new approach for appendicular muscle mass assessment by ultrasound[J]. Nutrition, 2021, 83: 111056. DOI: 10.1016/j.nut.2020.111056.
    [31]
    ALFURAIH A M, TAN A L, O’CONNOR P, et al. Muscle stiffness in rheumatoid arthritis is not altered or associated with muscle weakness: A shear wave elastography study[J]. Modern Rheumatology, 2020, 30(4): 617−625. DOI: 10.1080/14397595.2019.1645374.
    [32]
    CHENG D T H, LEE K Y S, AHUJA A T, et al. Sonographic assessment of swallowing in irradiated nasopharyngeal carcinoma patients[J]. The Laryngoscope, 2018, 128(11): 2552−2559. DOI: 10.1002/lary.27222.
    [33]
    MENESES A L, NAM M C Y, BAILEY T G, et al. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age[J]. Physiological Reports, 2020, 8(19): e14580. DOI: 10.14814/phy2.14580.
    [34]
    RUBY L, KUNUT A, NAKHOSTIN D N, et al. Speed of sound ultrasound: Comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity[J]. European Radiology, 2020, 30(10): 5272−5280. DOI: 10.1007/s00330-020-06885-8.
    [35]
    MIYATAKE Y, MISHIMA Y, TSUTSUMI R, et al. Assessment of insulin resistance in the skeletal muscle of mice using positron emission tomography/computed tomography imaging[J]. Biochemical and Biophysical Research Communications, 2020, 528(3): 499−505. DOI: 10.1016/j.bbrc.2020.05.165.
    [36]
    HADDOCK B, HOLM S, POULSEN J M, et al. Assessment of muscle function using hybrid PET/MRI: Comparison of 18F-FDG PET and T2-weighted MRI for quantifying muscle activation in human subjects[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44(4): 704−711. DOI: 10.1007/s00259-016-3507-1.
    [37]
    LEE Y S, HONG N, WITANTO J N, et al. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment[J]. Clinical Nutrition, 2021, 40(8): 5038−5046. DOI: 10.1016/j.clnu.2021.06.025.
    [38]
    NACHIT M, HORSMANS Y, SUMMERS R M, et al. AI-based CT body composition identifies myosteatosis as key mortality predictor in asymptomatic adults[J]. Radiology, 2023, 307(5): e222008. DOI: 10.1148/radiol.222008.
    [39]
    KIM K, GU Y, WANG C Y, et al. Quantification of creatine kinase reaction rate in mouse hindlimb using phosphorus‐31 magnetic resonance spectroscopic fingerprinting[J]. NMR in Biomedicine, 2021, 34(2): e4435. DOI: 10.1002/nbm.4435.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (171) PDF downloads (28) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return