ISSN 1004-4140
CN 11-3017/P
WEI H, BAI Q Y, SUN J L, et al. Application of Seismic Signal Harmonic Frequency Enhancement Technology for Fine Identification of Braided River Sand Bodies[J]. CT Theory and Applications, 2024, 33(5): 577-584. DOI: 10.15953/j.ctta.2023.176. (in Chinese).
Citation: WEI H, BAI Q Y, SUN J L, et al. Application of Seismic Signal Harmonic Frequency Enhancement Technology for Fine Identification of Braided River Sand Bodies[J]. CT Theory and Applications, 2024, 33(5): 577-584. DOI: 10.15953/j.ctta.2023.176. (in Chinese).

Application of Seismic Signal Harmonic Frequency Enhancement Technology for Fine Identification of Braided River Sand Bodies

More Information
  • Received Date: September 06, 2023
  • Revised Date: January 10, 2024
  • Accepted Date: January 16, 2024
  • Available Online: March 07, 2024
  • Many oil fields in the Bohai Oilfield are currently in the stage of high water cut and low recovery. Thus, it is urgent to conduct in-depth research on the potential of these oil fields to maintain stable production. After 20 years of directional well development, Bohai B Oilfield has developed a set of layers with combined production and strong injection, resulting in severe interlayer interference and difficulties in tapping the potential of the remaining oil. Owing to the limited resolution of existing seismic data, it is not possible to identify the reservoir structure inside the braided river composite sand body, including the vertical and horizontal distribution of the interlayer and thin sand body. Therefore, directional well development is currently mainly used. Here, the seismic signal harmonic frequency enhancement technology is proposed, which directly uses the fundamental component of seismic data to predict harmonic and subharmonic information, and then adds it to the original seismic data to expand the high-frequency and low-frequency seismic information, achieving the purpose of frequency enhancement. This method overcomes the limitations of traditional convolutional models, eliminating the need of well information and to estimate seismic wavelets and assume sparse stratigraphic reflection coefficients, thereby reducing the human subjective factors. The research results, verified through dynamic and static information, showed that the seismic signal harmonic frequency enhancement technology can effectively and finely identify the internal structure of braided river sand bodies, help to transform directional wells into horizontal wells for development, avoid interlayer interference, and promote efficient extraction of the remaining oil.

  • [1]
    宋建国, 程亮, 孟宪军, 等. 步进迭代法测井与井旁地震资料匹配处理[J]. 石油地球物理探, 2016, 51(1): 80−86.

    SONG J G, CHENG L, MENG X J, et al. Well logging and well-side seismic data matching based on step-by-step iterative method[J]. Oil Geophysical Prospecting, 2016, 51(1): 80−86. (in Chinese).
    [2]
    陈双全, 李向阳. 应用傅里叶尺度变换提高地震资料分辨率[J]. 石油地球物理勘探, 2015, 50(2): 213−218.

    CHEN S Q, LI X Y. Seismic resolution enhancement based on the scale characteristics of Fourier transform[J]. Oil Geophysical Prospecting, 2015, 50(2): 213−218. (in Chinese).
    [3]
    徐倩茹, 孙成禹, 乔志浩, 等. 基于Gabor变换的地震资料高分辨率处理方法研究[J]. 断块油气田, 2016, 23(4): 460−464.

    XU Q R, SUN C Y, QIAO Z H, et al. High-resolution processing method of seismic data based on Gabor transform[J]. Fault-block Oil & Gas Field, 2016, 23(4): 460−464. (in Chinese).
    [4]
    王宗俊. Gabor有色反褶积[J]. 石油地球物理勘探, 2016, 51(6): 1103−1108.

    WANG Z J. Colored Gabor deconvolution[J]. Oil Geophysical Prospecting, 2016, 51(6): 1103−1108. (in Chinese).
    [5]
    陈平, 谭辉煌, 秦童, 等, 基于谱反演的谱蓝化拓频方法研究及应用[J]. 东北石油大学学报, 2021, 45(6): 21-29.

    CHEN P, TAN H H, QIN T, et al. Research and application of spectrum blueing technology for frequency-broadening based on spectrum inversion[J]. Journal of Northeast Petroleum University, 2021, 45(5): 21-30. (in Chinese).
    [6]
    廖仪, 刘巍, 胡林, 等. 地震保幅高低频拓展与多尺度贝叶斯融合反演[J]. 石油地球物理勘探, 2021, 56(6): 1330−1339.

    LIAO Y, LIU W, HU L, et al. Research on high and low frequency expansion of seismic amplitude preserving and multi-scale Bayesian fusion inversion[J]. Oil Geophysical Prospecting, 2021, 56(6): 1330−1339. (in Chinese).
    [7]
    郭爱华, 路鹏飞, 余波, 等. 利用Shearlet变换提高叠后地震资料分辨率[J]. 石油地球物理勘探, 2021, 56(5): 992−1000.

    GUO A H, LU P F, YU B, et al. Improving post-stack seismic data resolution based on Shearlet transform[J]. Oil Geophysical Prospecting, 2021, 56(5): 992−1000. (in Chinese).
    [8]
    潘海娣, 吕健飞, 陈娟, 等. 三步法提高地震分辨率处理技术在鄂尔多斯盆地苏东南地区薄砂体识别中的应用[J]. 大庆石油地质与开发, 2021, 40(6): 144−149.

    PAN H D, LV J F, CHEN J, et al. Three-step method of processing technique for enhancing the seismic resolution and its application in the thin sandbody recognition in Southeast Sugeli of Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(6): 144−149. (in Chinese).
    [9]
    王江, 涂国田, 王杰. 基于载波调制的高分辨率地震双向拓频技术及其应用[J]. 石油物探, 2021, 60(6): 954−963. DOI: 10.3969/j.issn.1000-1441.2021.06.009.

    WANG J, TU G T, WANG J. High-resolution seismic bidirectional frequency extension based on carrier modulation[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 954−963 DOI: 10.3969/j.issn.1000-1441.2021.06.009. (in Chinese).
    [10]
    李弘艳, 杨子川, 韩强, 等. 属性分析和地质统计反演在塔里木盆地深层薄砂体识别中的联合应用[J]. 工程地球物理学报, 2017, 14(2): 159−164. DOI: 10.3969/j.issn.1672-7940.2017.02.007.

    LI H Y, YANG Z C, HAN Q, et al. The combined application of attribute analysis and geo-statistical inversion to identification of the deepthin sand body in sandaoqiao area of the tarim basin[J]. Chinese Journal of Engineering Geophysics, 2017, 14(2): 159−164. DOI: 10.3969/j.issn.1672-7940.2017.02.007. (in Chinese).
    [11]
    姜传金, 扈玖战. 松辽盆地北部胡吉吐莫北地区萨尔图油层河道砂体地震识别方法[J]. 大庆石油地质与开发, 2020, 39(2): 120−124.

    JIANG C J, HU J Z. Seismic recognizing method of the channel sandbodies in Saertu oil reservoir in Hujitumobei area of North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(2): 120−124. (in Chinese).
    [12]
    高少武, 赵波, 贺振华, 等. 地震子波提取方法研究进展[J]. 地球物理学进展, 2009, 24(4): 1384−1391. DOI: 10.3969/j.issn.1004-2903.2009.04.028.

    GAO S W, ZHAO B, HE Z H, et al. Research progress of seismic wavelet extraction[J]. Progress in Geophysics, 2009, 24(4): 1384-1391. DOI: 10.3969/j.issn.1004-2903.2009.04.028. (in Chinese).
    [13]
    杨培杰, 印兴耀. 地震子波提取方法综述[J]. 石油地球物理勘探, 2008, 43(1): 123-128.

    YANG P J, YIN X Y. Summary of seismic wavelet pick-up[J]. Oil Geophysical Prospecting, 2008, 43(1): 123-128. (in Chinese).
    [14]
    WALKER J S. A prime on wavelets and their scien tific applications[M]. CRC Press, BocaRaton, 1999.
    [15]
    QIAN S. Introductiontotime-frequencyandwave-lettransforms[M]. Prentice-Hall, New Jersey, 2002.
    [16]
    刘立彬, 周小平, 魏庆, 等. 面向小尺度地质目标体的地震信号谐波预测拓频技术及应用[J]. 物探化探计算技术, 2020, 42(4): 460−466. DOI: 10.3969/j.issn.1001-1749.2020.04.04.

    LIU L B, ZHOU X P, WEI Q, et al. Technology and application of seismic signal harmonic prediction extension processing for small scale geological targetbody[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2020, 42(4): 460−466. DOI: 10.3969/j.issn.1001-1749.2020.04.04. (in Chinese).
  • Related Articles

    [1]DUAN Chengxiang, LIANG Yuan, FAN Xiaohui, ZHANG Fanchang, WU Jun. Research on High Resolution Seismic Date Processing Method Based on Adaptive VMD[J]. CT Theory and Applications, 2022, 31(2): 135-148. DOI: 10.15953/j.1004-4140.2022.31.02.01
    [2]ZOU Qiang, HUANG Jianping, LIU Dingjin, WEI Wei, GUO Xu. Modeling of Acoustic Reflection Imaging Logging Based on Least-square Reverse Time Migration[J]. CT Theory and Applications, 2019, 28(1): 13-28. DOI: 10.15953/j.1004-4140.2019.28.01.02
    [3]KONG Xue, WANG De-ying, ZHANG Rui-xiang, ZHU Xue-juan, HU Qiu-yuan. A Method for Enhancing Resolution of Irregular Seismic Data in Curvelet Domain[J]. CT Theory and Applications, 2017, 26(6): 707-713. DOI: 10.15953/j.1004-4140.2017.26.06.06
    [4]ZHANG Jun-sheng, WANG Ming-quan, GUO Yong-liang, CHEN Zhi-qiang. Analysis of X-ray Digital Imaging System Resolution[J]. CT Theory and Applications, 2011, 20(2): 227-234.
    [5]MA Zhong, ZHAO Xin-bo, AI Xin, ZHANG Ke. Super-Resolution Reconstruction for X-Ray of Turbine Blade[J]. CT Theory and Applications, 2010, 19(1): 41-47.
    [6]GAO Jie, TAN Mao-jin, ZHONG Guang-hai, LIU Huan-li. Resolution Matching Method of High Induction Logging and Applications[J]. CT Theory and Applications, 2009, 18(2): 41-49.
    [7]ZENG Kai, ZHAO Shi-ying, Laurie Lee Fajardo, WANG Ge. Global Low-Resolution CT Scan Regulated Tomo-synthesis[J]. CT Theory and Applications, 2005, 14(2): 63-69.
    [8]DAN Guo, GE Yi-lin, CHEN Si-ping, TAO Du-chun. Design of a High-Speed Multi-Channel Data Acquisition System with PGA of the Medical CT[J]. CT Theory and Applications, 2005, 14(1): 37-41.
    [9]WANG Xue-li. Research and Discussion for CT Image Quality Evaluation[J]. CT Theory and Applications, 2003, 12(3): 46-52.
    [10]CHEN Wei-chang, CHEN Zhi-hua, ZHAO Tian-de, WANG Zi-qiang. Improvement of CT Contrast (Density) Resolution By Dual Photons Absorption Method[J]. CT Theory and Applications, 2002, 11(4): 5-8.
  • Cited by

    Periodical cited type(4)

    1. 尹振琪,吴俊峰,朱石柱. 人工智能辅助诊断系统结合低剂量CT在肺小结节筛查中的应用进展. 影像研究与医学应用. 2024(24): 7-9 .
    2. 王璟琛,柴军. 人工智能体积密度法判断肺亚实性结节的浸润性研究. CT理论与应用研究. 2023(02): 241-248 . 本站查看
    3. 王和良,苏良宝,蔡少辉,杜丽珠. 人工智能辅助诊断系统在肺结节CT检测中的应用分析. 中国医疗器械信息. 2023(05): 91-93+161 .
    4. 苏寅晨,张晓琴. 人工智能在肺结节检测及诊断中的应用进展. 内蒙古医学杂志. 2023(04): 506-508 .

    Other cited types(1)

Catalog

    Article views (142) PDF downloads (49) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return