Citation: | LI X, LUO H, DENG F, et al. Study on Nondestructive Testing of Source Factors of Tunnel Arch Quality[J]. CT Theory and Applications, 2025, 34(2): 245-254. DOI: 10.15953/j.ctta.2023.204. (in Chinese). |
To obtain high-energy, high-frequency, and wide-band seismic signals in tunnel arch quality testing, the influence on seismic waves of the mass, velocity, and contact area of the hammer source was studied based on a finite element simulation. The results show that with the increase in mass of the hammer, the amplitude of the hammer signal increases linearly, the main frequency decreases, and the frequency band width increases significantly. With the increase in the instantaneous velocity of the hammering, the amplitude of the hammer signal increases linearly, the main frequency increases slightly, and the frequency bandwidth does not change significantly. With the increase in the contact area between the hammer and the ground, the amplitude of the hammer signal increases, and the main frequency and bandwidth remain basically unchanged, but the energy of the high-frequency component is attenuated and the bandwidth is narrowed. According to the above research, a small integrated round-head hammer was designed and non-destructive testing experiments were carried out, which showed that the hammer could obtain high-quality seismic signals and realize the detection and imaging of the tunnel inverted arch bottom interface, and the imaging results were basically consistent with the actual construction situation. In this work, the study of the seismic source is extended to the field of tunnel arches, and it can provide a reference for nondestructive testing of tunnel arches.
[1] |
刘彤彤, 梁庆国, 杜耀辉, 等. 浅埋泥岩隧道仰拱底鼓力学特性[J]. 科学技术与工程, 2023, 23(23): 10112-10119. DOI: 10.12404/j.issn.1671-1815.2023.23.23.10112.
LIU T T, LIANG Q G, DU Y H, et al. Mechanical characteristics of upright arch bottom drum in shallow buried mudstone tunnel[J]. Science Technology and Engineering, 2023, 23(23): 10112-10119. DOI: 10.12404/j.issn.1671-1815.2023.23.23.10112. (in Chinese).
|
[2] |
李明. 隧道施工塌方事故原因调查及防控措施研究[J]. 运输经理世界, 2023, 691(9): 96-98. DOI: 10.3969/j.issn.1673-3681.2023.09.032.
LI M. Investigation of causes of tunnel construction collapse accident and research on prevention and control measures[J]. Transport Manager World, 2023, 691(9): 96-98. DOI: 10.3969/j.issn.1673-3681.2023.09.032. (in Chinese).
|
[3] |
马伟斌, 柴金飞. 运营铁路隧道病害检测、监测、评估及整治技术发展现状[J]. 隧道建设(中英文), 2019, 39(10): 1553-1562.
MA W B, CHAI J F. Development status of disease detection, monitoring, evaluation and remediation technology of operational railway tunnels[J]. Tunnel Construction, 2019, 39(10): 1553-1562. (in Chinese).
|
[4] |
申付全. 隧道仰拱施工质量检测方法探讨[J]. 路基工程, 2017, 192(3): 208-211.
SHEN F Q. Discussion on quality detection method of tunnel arch construction[J]. Subgrade Engineering, 2017, 192(3): 208-211. (in Chinese).
|
[5] |
叶建虎. 隧道混凝土仰拱无损检测方法综述[J]. 公路交通技术, 2019, 35(6): 100-104.
YE J H. Review of nondestructive testing methods of tunnel concrete inverted arch[J]. Journal of Highway and Transportation Technology, 2019, 35(6): 100-104. (in Chinese).
|
[6] |
汪博, 曹旷. 混凝土浅层钢筋对雷达检测的屏蔽作用[J]. 无损检测, 2020, 42(12): 39-43, 55. DOI: 10.11973/wsjc202012009.
WANG B, CAO K. Shielding effect of shallow concrete reinforcement on radar detection[J]. Nondestructive Testing, 2020, 42(12): 39-43, 55. DOI: 10.11973/wsjc202012009. (in Chinese).
|
[7] |
周竹生, 蒋婵君, 郭有刚. 浅层地震反射波法在隧道工程勘探中的应用[J]. 工程地球物理学报, 2008, (5): 516-518. DOI: 10.3969/j.issn.1672-7940.2008.05.002.
ZHOU Z S, JIANG C J, GUO Y G. Application of shallow seismic reflected wave method in tunnel engineering exploration[J]. Journal of Engineering Geophysics, 2008, (5): 516-518. DOI: 10.3969/j.issn.1672-7940.2008.05.002. (in Chinese).
|
[8] |
宋玉龙, 牟义. 煤田地震勘探的震源参数试验研究[J]. 煤炭工程, 2023, 55(2): 57-62.
SONG Y L, MOU Y. Experimental study on source parameters of seismic exploration in coalfield[J]. Coal Engineering, 2023, 55(2): 57-62. (in Chinese).
|
[9] |
吴曲波, 曹成寅. 使用锤击震源的小折射表层调查中的采集参数试验[J]. 工程地球物理学报, 2015, 12(2): 229-233. DOI: 10.3969/j.issn.1672-7940.2015.02.017.
WU Q B, CAO C Y. Experiment on acquisition parameters in small refractive surface survey using hammered source[J]. Journal of Engineering Geophysics, 2015, 12(2): 229-233. DOI: 10.3969/j.issn.1672-7940.2015.02.017. (in Chinese).
|
[10] |
张保卫, 张凯, 岳航羽, 等. 江苏滩涂区浅层地震探测方法技术应用[J]. 物探与化探, 2018, 42(1): 144-153.
ZHANG B W, ZHANG K, YUE H Y, et al. Application of shallow seismic detection method in beach area of Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2018, 42(1): 144-153. (in Chinese).
|
[11] |
杨倩, 田钢, 王益民. 落锤震源不同参数激发的数值模拟研究[J], CT理论与应用研究, 2018, 27(3): 281-291. DOI: 10.15953/j.1004-4140.2018.27.03.01.
YANG Q, TIAN G, WANG Y M. Numerical simulation study on excitation of different parameters of drop weight source[J]. CT Theory and Applications, 2018, 27(3): 281-291. DOI:10.15953/j.1004-4140.2018.27.03.01. (in Chinese).
|
[12] |
KEISWETTER D A. A field investigation of source parameters for the sledgehammer[J]. Geophysics, 1995, 60(4): 1051-1057. DOI: 10.1190/1.1443833.
|
[13] |
黄真萍, 张思怡, 曹洋兵, 等. 锤击震源参数对浅层地震波的影响规律研究[J]. 防灾科技学院学报, 2020, 22(4): 1-8. DOI: 10.3969/j.issn.1673-8047.2020.04.001.
HUANG Z P, ZHANG S Y, CAO Y B, et al. Study on the influence of hammering source parameters on shallow seismic waves[J]. Journal of College of Disaster Prevention Science and Technology, 2020, 22(4): 1-8. DOI: 10.3969/j.issn.1673-8047.2020.04.001. (in Chinese).
|
[14] |
娄国充, 孙志涛, 满令聪. 三维地震波定向超前地质预报技术试验研究[J]. 岩石力学与工程学报, 2020, 39(S1): 2733-2740.
LOU G C, SUN Z T, MAN L C. Experimental study on directional advanced geological prediction technology of three-dimensional seismic waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2733-2740. (in Chinese).
|
[15] |
王德福. 可控冲击震源在工程地震勘探中的应用探索[J]. 公路交通技术, 2022, 38(1): 43-49.
WANG D F. Application of controllable shock source in engineering seismic exploration[J]. Journal of Highway and Transportation Technology, 2022, 38(1): 43-49. (in Chinese).
|
[16] |
白旭明, 李海东, 陈敬国, 等. 可控震源单台高密度采集技术及应用效果[J]. 中国石油勘探, 2015, 20(6): 39-43. DOI: 10.3969/j.issn.1672-7703.2015.06.005.
BAI X M, LI H D, CHEN J G, et al. Single high-density acquisition technology and application effect of vibroseis[J]. China Petroleum Exploration, 2015, 20(6): 39-43. DOI: 10.3969/j.issn.1672-7703.2015.06.005. (in Chinese).
|
[17] |
张慧利, 张琳, 刘平. 炸药震源和可控震源在厚砾石层覆盖区中的试验对比研究[J]. 工程地球物理学报, 2016, 13(2): 221-226. DOI: 10.3969/j.issn.1672-7940.2016.02.015.
ZHANG H L, ZHANG L, LIU P. Comparative study on experimental comparison of explosive and vibroseis in the coverage area of thick gravel layer[J]. Journal of Engineering Geophysics, 2016, 13(2): 221-226. DOI: 10.3969/j.issn.1672-7940.2016.02.015. (in Chinese).
|
[18] |
魏铁, 聂明涛, 叶朋朋, 等. 提高复杂地表区可控震源炮点布设均匀性的方法及应用效果研究[J]. 工程地球物理学报, 2022, 19(5): 699-707.
WEI T, NIE M T, YE P P, et al. Study on the method and application effect of improving the uniformity of vibroseis gun point layout in complex surface area[J]. Journal of Engineering Geophysics, 2022, 19(5): 699-707. (in Chinese).
|
[19] |
吴华, 张保卫, 王凯, 等. 哈拉湖地区浅层地震勘探可控震源激发参数对比试验[J]. 物探与化探, 2018, 42(5): 1033-1041.
WU H, ZHANG B W, WANG K, et al. Comparative test of vibrator excitation parameters of shallow seismic exploration in Hala Lake area[J]. Geophysical and Geoche-mical Exploration, 2018, 42(5): 1033-1041. (in Chinese).
|
[20] |
于鲁洋, 田钢, 王益民. 不同纵波速度介质中炸药震源激发数值模拟研究[J]. CT理论与应用研究, 2016, 25(3): 251-260. DOI: 10.15953/j.1004-4140.2016.25.03.01.
YU L Y, TIAN G, WANG Y M. Numerical simulation of excitation source with medium of different P-wave velocity[J]. CT Theory and Applications, 2016, 25(3): 251-260. DOI: 10.15953/j.1004-4140.2016.25.03.01. (in Chinese).
|