Citation: | LI Y S, QIN D W, LIU Q W, et al. Research on the Identification of Sandstone Vanishing Points Based on Synchronous Compression Matching Pursuit Method[J]. CT Theory and Applications, 2024, 33(5): 551-560. DOI: 10.15953/j.ctta.2024.001. (in Chinese). |
The portrayal of sand cusp extinction is the key to evaluating the effectiveness of tectonic-lithological composite confinement, and it is difficult to accurately identify the location of sand cusp extinction due to the influence of seismic data band limitations. In order to effectively solve the problem of inaccurate identification of cusp extinction on seismic sections, this paper innovatively introduces the dual advantages of time-frequency resolution and energy focusing of synchronous compression match tracing to carry out the sand-cusp extinction identification research. Firstly, the time-frequency domain pleated-product operator is used to construct the redundancy dictionary of match tracing with the constraints of the initial model, and all the possible matching atoms are screened out to form the alternative atom bank in the time-frequency domain. The initial model constraints and the time-frequency domain joint inversion method are introduced into the inversion framework, which can obtain more accurate inversion results. Then, the dominant frequencies are extracted by channel-by-channel analysis using the simultaneous compressive match-tracking transform, and the time-frequency transient spectra are screened to obtain the single-frequency spectral profile with the optimal frequencies. The two-dimensional model and actual data testing of the proposed method show that the high-resolution seismic spectral decomposition sand-cusp identification method based on synchronous compression and matching tracking can obtain richer time-frequency domain information and get the single-frequency spectral profile with the optimal frequency, thus accurately identifying the location of cusps of subsurface geological bodies, which is of great significance for the depiction of cusps of overburden-type and erosion-type lithological confinement.
[1] |
WIDESS M B. Quantifying resolving power of seismic systems[J]. Geophysics, 1982, 47(8): 1160−1173. DOI: 10.1190/1.1441379.
|
[2] |
王军, 张中巧, 滕玉波, 等. 基于地震瞬时谱分析的三角洲砂体尖灭线识别技术[J]. 断块油气田, 2011, 18(5): 585−588.
WANG J, ZHANG Z Q, TENG Y B, et al. Pinch-out boundary recognition technology of delta sand body based on seismic instantaneous spectral analysis[J]. Fault-Block Oil & Gas Field, 2011, 18(5): 585−588. (in Chinese).
|
[3] |
王志杰. 东营凹陷小营油田沙二段砂体尖灭线地震描述技术[J]. 石油地球物理勘探, 2012, 47(2): 305−308.
WANG Z J. Seismic description on reservoirs pinchout line of the second members of Shahejie formation in Xiaoying, Dongying Depression[J]. Oil Geophysical Prospecting, 2012, 47(2): 305−308. (in Chinese).
|
[4] |
张军华, 范腾腾, 杨勇, 等. 永进油田西山窑组砂岩储层尖灭线的地震识别技术[J]. 石油物探, 2016, 55(2): 261−270.
ZHANG J H, FAN T T, YANG Y, et al. Seismic recognition techniques for sandstone reservoir pinch-out line in Xishanyao formation in Yongjin Oil field[J]. Geophysical Prospecting for Petroleum, 2016, 55(2): 261−270. (in Chinese).
|
[5] |
张繁昌, 李传辉, 印兴耀. 三角洲砂岩尖灭线的地震匹配追踪瞬时谱识别方法[J]. 石油地球物理勘探, 2012, 47(1): 82−88.
ZHANG F C, LI C H, YIN X Y. Delta fringe line recognition based on seismic matching pursuit instantaneous spectral characteristics[J]. Oil Geophysical Prospecting, 2012, 47(1): 82−88. (in Chinese).
|
[6] |
汪瑞良, 张文珠, 刘徐敏, 等. 基于匹配追踪时频谱计算的砂体尖灭线检测方法[J]. 物探化探计算技术, 2017, 39(6): 799−807.
WANG R L, ZHANG W Z, LIU X M, et al. The method of thin sand pinch-out boundary detection via T-F spectrum based on matching pursuit[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(6): 799−807. (in Chinese).
|
[7] |
李振春, 刁瑞, 韩文功, 等. 线性时频分析方法综述[J]. 勘探地球物理进展, 2010, 33(4): 239−246.
LI Z C, DIAO R, HAN W G, et al. Review on linear time frequency analysis methods[J]. Progress in Exploration Geophysics, 2010, 33(4): 239−246. (in Chinese).
|
[8] |
高静怀, 汪文秉, 朱光明. 小波变换与信号瞬时特征分析[J]. 地球物理学报, 1997, 40(6): 821−832.
GAO J H, WANG W B, ZHU G M. Wavelet transform and instantaneous attributes analysis[J]. Chinese Journal of Geophysics, 1997, 40(6): 821−832. (in Chinese).
|
[9] |
吴小羊, 刘天佑. 基于时频重排的地震信号Wigner-Ville分布时频分析[J]. 石油地球物理勘探, 2009, 44(2): 201−205.
WU X Y, LIU T Y. Time-frequency analysis on Wigner-Ville distribution of seismic signal based on time-frequency rearrangement[J]. Oil Geophysical Prospecting, 2009, 44(2): 201−205. (in Chinese).
|
[10] |
陈林, 宋海斌. 基于经验模态分解的地震瞬时属性提取[J]. 地球物理学进展, 2008, 23(4): 1179−1185.
CHEN L, SONG H B. Seismic instantaneous attribute extraction based on empirical mode decomposition[J]. Progress in Geophysics, 2008, 23(4): 1179−1185. (in Chinese).
|
[11] |
ROBINSON E A. Predictive decomposition of time series with applications to seismic exploration[D]. Massachusetts: Massachusetts Institute of Technology (MIT), 1954.
|
[12] |
LEVY S, FULLAGAR P K. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution[J]. Geophysics, 2012, 46(9): 1235−1243.
|
[13] |
SACCHI M D, VELIS D R, COMÍNGUEZ A H. Minimum entropy deconvolution with frequency-domain constraints[J]. Geophysics, 1994, 59(6): 938−945. DOI: 10.1190/1.1443653.
|
[14] |
PORTNIAGUINE O, CASTAGNA J. Spectral inversion: Lessons from modeling and Boonesville case study[C]//Seg Technical Program Expanded Abstracts, 2005.
|
[15] |
CHOPRA S, CASTAGNA J, PORTNIAGUINE O. Thin-bed reflectivity inversion[J]. Seg Technical Program Expanded Abstracts, 2006, 25(1): 3541.
|
[16] |
印兴耀, 李坤, 宗兆云, 等. 时频联合域贝叶斯地震反演方法[J]. 石油物探, 2017, 56(2): 250−260.
YIN X Y, LI K, ZONG Z Y, et al. Seismic inversion in joint time-frequency domain based on Bayesian scheme[J]. Geophysical Prospecting for Petroleum, 2017, 56(2): 250−260. (in Chinese).
|
[17] |
MARGRAVE G F. Theory of nonstationary linear filtering in the Fouier domain with application to time variant filtering[J]. Geophysics, 1998, 63:244-259.
|
[18] |
李坤, 印兴耀, 宗兆云, 等. 基于快速匹配追踪的混合域地震稀疏反演方法[J]. 中国石油大学学报(自然科学版), 2018, 42(1): 50−59.
LI K, YIN X Y, ZONG Z Y, et al. Seismic sparse inversion in mixed-domain utilizing fast matching pursuit algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(1): 50−59. (in Chinese).
|