ISSN 1004-4140
CN 11-3017/P
ZHENG R, CHEN J B, LIU Y L, et al. Advance in Lutetium Yttrium Silicate Scintillation Crystal for All-Digital PET[J]. CT Theory and Applications, 2024, 33(4): 405-420. DOI: 10.15953/j.ctta.2024.014. (in Chinese).
Citation: ZHENG R, CHEN J B, LIU Y L, et al. Advance in Lutetium Yttrium Silicate Scintillation Crystal for All-Digital PET[J]. CT Theory and Applications, 2024, 33(4): 405-420. DOI: 10.15953/j.ctta.2024.014. (in Chinese).

Advance in Lutetium Yttrium Silicate Scintillation Crystal for All-Digital PET

More Information
  • Received Date: August 29, 2023
  • Revised Date: March 05, 2024
  • Accepted Date: March 28, 2024
  • Available Online: April 16, 2024
  • Lutetium yttrium silicate (LYSO) has become the most prominent scintillation crystal material in positron emission tomography (PET) because of its outstanding comprehensive performance. In recent years, the emerging All-Digital PET technology based on the Multi-Voltage Threshold (MVT) method has digitized the origin of scintillation pulses, thereby improving key metrics such as spatial resolution and system sensitivity; this advancement has also given rise to new applications like proton therapy monitoring and positron lifetime spectroscopy. Unlike traditional time interval sampling methods, MVT represents a longitudinal sampling technique based on voltage-time, offering inherent advantages in rapidly varying pulse signal sampling domains. Consequently, tailoring the scintillation luminescence properties of LYSO crystals to adapt to the MVT sampling method becomes a new development direction for LYSO scintillation crystals under the demand of digital PET applications. This paper reviews the scintillation principles, performance modulation, and growth techniques of LYSO crystals. It outlines strategies for adjusting key properties of LYSO crystals, such as light output, decay time, and uniformity to align with the sampling characteristics of All-Digital PET. Furthermore, the paper presents the research progress of fast-decaying and highly uniform digitally modified LYSO crystals developed by the research team to meet the demands of All-Digital PET. Finally, based on the current research status of LYSO and the new demand for digital PET, the future development direction of LYSO scintillation crystals is discussed.

  • [1]
    WANG L, ZHU J, LIANG X, et al. Performance evaluation of the Trans-PET® BioCaliburn® LH system: A large FOV small-animal PET system[J]. Physics in Medicine & Biology, 2014, 60(1): 137−150.
    [2]
    LIANG X, LI J, ANTONECCHIA E, et al. NEMA-2008 and In-Vivo animal and plant imaging Performance of the large FOV preclinical digital PET/CT system discoverist 180[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(5): 622−629. DOI: 10.1109/TRPMS.2020.2983221.
    [3]
    YU X, ZHANG X, ZHANG H, et al. Requirements of scintillation crystals with the development of PET scanners[J]. Crystals, 2022, 12(9): 1302. DOI: 10.3390/cryst12091302.
    [4]
    NUTT R. The history of positron emission tomography[J]. Molecular Imaging & Biology, 2002, 4(1): 11−26.
    [5]
    SURTI S, KARP J S, MUEHLLEHNER G. Development of pixelated NaI(Tl) detectors for PET[C]//2001 IEEE Nuclear Science Symposium Conference, 2001.
    [6]
    ZHANG H, VU N T, BAO Q, et al. Performance characteristics of BGO detectors for a low cost preclinical PET scanner[J]. IEEE Transactions on Nuclear Science, 2009, 57(3): 1038−1044.
    [7]
    SURTI S, KARP J S. Imaging characteristics of a 3-dimensional GSO whole-body PET camera[J]. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine, 2004, 45(6): 1040.
    [8]
    NGUYEN H, KHAN S, DAS N, et al. Simultaneously tracking multiple single cells using a dual-layer BGO/LSO PET scanner[J]. Medical Physics, 2022, 49(6): 161.
    [9]
    ZHENG R, CHEN J, DENG Y F, et al. Study on the inhomogeneity of LYSO crystal boules grown by the CZ method for PET applications[J]. Journal of Crystal Growth, 2020, 546(4): 125708.
    [10]
    XUE Z, CHEN L, ZHAO S, et al. Enhancement of scintillation properties of LYSO: Ce crystals by al codoping[J]. Crystal Growth & Design, 2023, 23(6): 4562−4570.
    [11]
    MELCHER C L, SCHWEITZER J S. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator[J]. IEEE Transactions on Nuclear Science, 1992, 39(4): 502−505. DOI: 10.1109/23.159655.
    [12]
    COOKE D W, MCCLELLAN K J, BENNETT B L, et al. Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5[J]. Journal of Applied Physics, 2000, 88(12): 7360−7362. DOI: 10.1063/1.1328775.
    [13]
    BLAHUTA S, BESSIERE A, VIANA B, et al. Evidence and consequences of Ce4+ in LYSO: Ce, Ca and LYSO: Ce, Mg single crystals for medical imaging applications[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 3134. DOI: 10.1109/TNS.2013.2269700.
    [14]
    WU Y T, PENG J, DANIEL R, et al. Unraveling the critical role of site occupancy of lithium co-dopants in Lu2SiO5: Ce3+ single-crystalline scintillators[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8194−8201.
    [15]
    CHEN J, ZHANG L, ZHU R Y. Large size LYSO crystals for future high energy physics experiments[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 3133−3140. DOI: 10.1109/TNS.2005.862923.
    [16]
    DOROUD K, WILLIAMS M C S, ZICHICHI A, et al. Comparative timing measurements of LYSO and LFS-3 to achieve the best time resolution for TOF-PET[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 793: 57-61.
    [17]
    Mao R H, Wu C, DAI L E, et al. Crystal growth and scintillation properties of LSO and LYSO crystals[J]. Journal of Crystal Growth, 2013, 358: 97−100. DOI: 10.1016/j.jcrysgro.2013.01.038.
    [18]
    王佳, 岑伟, 徐扬, 等. 高发光均匀性Ce:LSO闪烁晶体的研制[J]. 压电与声光, 2016, 38(003): 405−408.

    WANG J, CENG W, XU Y, et al. Growth of Ce: LSO scintillation crystal with high light-output uniformity[J]. Piezoelectrics & Acoustooptics, 2016, 38(003): 405−408. (in Chinese).
    [19]
    PRENOSIL G A, SARI H, FÜRSTNER M, et al. Performance characteristics of the biograph vision quadra PET/CT system with long axial field of view using the NEMA NU 2-2018 standard[J]. Journal of Nuclear Medicine, 2021, 63(3): 476−484.
    [20]
    RAUSCH I A I J. Performance evaluation of the vereos PET/CT system according to the NEMA NU2-2012 standard[J]. Journal of Nuclear Medicine, 2019, 60(4): 561−567. DOI: 10.2967/jnumed.118.215541.
    [21]
    LI B, ZHANG B, YANG L, et al. The initial evaluation of an SRM-Based PET normalization method[C]//2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2019.
    [22]
    SPENCER B A, BERG E, SCHMALL J P, et al. Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize PET scanners with a long axial field of view[J]. Journal of Nuclear Medicine, 2021, 62(6): 861−870. DOI: 10.2967/jnumed.120.250597.
    [23]
    NEMALLAPUDI M V, GUNDACKER S, LECOQ P, et al. Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca[J]. Physics in Medicine & Biology, 2015, 60(12): 4635.
    [24]
    CATES J W, LEVIN C S. Advances in coincidence time resolution for PET[J]. Physics in Medicine & Biology, 2016, 61(6): 2255.
    [25]
    SEIICHI Y, HIROSHI W, TADASHI W, et al. Development of ultrahigh resolution Si-PM-based PET system using 0.32 mm pixel scintillators[J]. Nuclear Instruments and Methods in Physics Research, Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 836(11): 7−12.
    [26]
    SRILALAN K, ERIC B, PIETER M, et al. Performance evaluation of the MOLECUBES β-CUBE: A high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors[J]. Physics in Medicine & Biology, 2018, 63(15): 155013.
    [27]
    XIE Q, KAO C M, WANG X, et al. Potentials of digitally sampling scintillation pulses in timing determination in PET[J]. IEEE Transactions on Nuclear Science, 2009, 56(5): 2607. DOI: 10.1109/TNS.2009.2023656.
    [28]
    XI D, KAO C, LIU W, et al. FPGA-only MVT digitizer for TOF PET[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3253−3261. DOI: 10.1109/TNS.2013.2277855.
    [29]
    徐兰兰, 孙丛婷, 薛冬峰. 稀土闪烁晶体研究进展[J]. 中国科学: 技术科学, 2016, (7): 17.

    XU L L, SUN C T, XUE D F. Recent advances in rare earth scintillation crystals[J]. Sci Sin Tech, 2016, 46: 657-673. DOI:10.1360/N092015-00354. (in Chinese).
    [30]
    LECOQ P, GEKTIN A, KORZHIK M, et al. Scintillation mechanisms in inorganic scintillators[B]. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 2017, 125-174.
    [31]
    PIDOL L, KAHN-HARARI A, VIANA B, et al. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1084−1087. DOI: 10.1109/TNS.2004.829542.
    [32]
    JIA Y, MIGLIO A, MIKAMI M, et al. Ab initio study of luminescence in Ce-doped LYSO: The role of oxygen vacancies on emission color and thermal quenching behavior[J]. Physical Review Materials, 2018, 2(12): 125202. DOI: 10.1103/PhysRevMaterials.2.125202.
    [33]
    沈思情, 刘浦锋, 肖型奎, 等. 一种生长三价铈离子掺杂硅酸钇镥闪烁晶体的方法: 中国[P]. 2014
    [34]
    DING D, FENG H, REN G, et al. Air atmosphere annealing effects on LSO: Ce crystal[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1272−1277. DOI: 10.1109/TNS.2009.2036351.
    [35]
    WU Y, KOSCHAN M, FOSTER C, et al. Czochralski growth, optical, scintillation, and defect properties of Cu2+ Co-doped Lu2SiO5: Ce3+ single crystals[J]. Crystal Growth & Design, 2019, 19(7): 4081−4089.
    [36]
    BRANDLE C D, VALENTINO A J, BERKSTRESSER G W. Czochralski growth of rare-earth orthosilicates (Ln2SiO5)[J]. Journal of Crystal Growth, 1986, 79(1/3): 308−315. DOI: 10.1016/0022-0248(86)90454-9.
    [37]
    ZHENG R, WANG L, LIU Y, et al. Optical and scintillation properties of modified LSO crystals with different ions doping grown by a rapid CZ system[J]. Journal of Crystal Growth, 2024, 627: 127523. DOI: 10.1016/j.jcrysgro.2023.127523.
    [38]
    SIDLETSKIY O, BONDAR V, GRINYOV B, et al. Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO: Ce crystals[J]. Journal of Crystal Growth, 2010, 312(4): 601-606.
    [39]
    WANG T, DING D, CHEN X, et al. Role of lanthanum in thermoluminescence properties of La2xLu2(1-x)SiO5: Ce crystals[J]. Journal of Material Science, 2018, 53(9): 6450−6458. DOI: 10.1007/s10853-018-2011-3.
    [40]
    GU M, JIA L, LIU X, et al. Luminescent properties of Na-codoped Lu2SiO5: Ce phosphor[J]. Journal of Alloys & Compounds, 2010, 502(1): 190−194.
    [41]
    WU Y, PENG J, RUSTROM D, et al. Unraveling the critical role of site occupancy of lithium codopants in Lu2SiO5: Ce3+ single-crystalline scintillators[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8194-8201.
    [42]
    SPURRIER M A, SZUPRYCZYNSKI P, ROTHFUSS H, et al. The effect of co-doping on the growth stability and scintillation properties of lutetium oxyorthosilicate[J]. Journal of Crystal Growth, 2008, 310(7): 2110-2114.
    [43]
    Van der KOLK E, DORENBOS P, van EIJK C, et al. 5D electron delocalization of Ce3+ and Pr3+ in Y2SiO5 and Lu2SiO5[J]. Physical Review B, 2005, 71(16): 165120.
    [44]
    PEJCHAL J, NIKL M, MIHOKOVA, et al. Pr3+ doped complex oxide single crystal scintillators[J]. Journal of Physics D: Applied Physics, 2009, 42(5): 055117. DOI: 10.1088/0022-3727/42/5/055117.
    [45]
    STARZHINSKIY N G, SIDLETSKIY O T, TAMULAITIS G, et al. Improving of LSO (Ce) scintillator properties by co-doping[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 1427-1431.
    [46]
    CECILIA A, JARY V, NIKL M, et al. Investigation of the luminescence, crystallographic and spatial resolution properties of LSO: Tb scintillating layers used for X-ray imaging applications[J]. Radiation Measurements, 2014, 62: 28−34. DOI: 10.1016/j.radmeas.2013.12.005.
    [47]
    MCNEIL, BRIAN W, THOMPSON N. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4(12): 814-821.
    [48]
    QIU A, WAN L, LING Y, et al. Energy calibration of MVT digitizers in All-Digital gamma cameras[J]. IEEE Transactions on Nuclear Science, 2023, 70(5): 847−852. DOI: 10.1109/TNS.2023.3267444.
    [49]
    QIU A, XIE Q. Mathematical considerations in energy spectrum recovery for digital energy spectrometers[J]. IEEE Transactions on Nuclear Science, 2023, 70(11): 2532-2537.
    [50]
    郑睿. PET用大尺寸硅酸钇镥闪烁晶体可控生长和均一性优化[D]. 武汉: 华中科技大学, 2021.
    [51]
    郑睿, 肖鹏, 林立, 等. 全数字化集散型闪烁晶体提拉炉控制系统: 中国[P]. 2015
    [52]
    ZHENG R, WANG L, LIU Y, et al. Scintillation properties of Cs3Cu2I5: Tl crystals grown by Cz, EFG and Bridgman methods with a multifunctional melt growth furnace[J]. Journal of Crystal Growth, 2024, 627: 127512. DOI: 10.1016/j.jcrysgro.2023.127512.
    [53]
    WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design[J]. Journal of Crystal Growth, 2010, 312(7): 1005−1018. DOI: 10.1016/j.jcrysgro.2009.12.074.
    [54]
    WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal[J]. Journal of Crystal Growth, 2010, 312(7): 1019−1028. DOI: 10.1016/j.jcrysgro.2009.12.073.
    [55]
    NEUBERT M, WINKLER J. Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling[J]. Journal of Crystal Growth, 2012, 360: 3−11. DOI: 10.1016/j.jcrysgro.2012.03.018.
    [56]
    顾鹏, 王鹏刚, 官伟明, 等. LYSO: Ce闪烁晶体的研究进展[J]. 人工晶体学报, 2021, 50(10): 12.

    GU P, WANG P G, GUAN W M, et al. Research progress on LYSO: Ce scintillation crystals[J]. Journal of Synthetic Crystals, 2021, 50(10): 12. DOI:10.16553/j.cnki.issn1000-985x.20210906.001. (in Chinese).
    [57]
    周文平, 牛微, 刘旭东, 等. 闪烁晶体Ce: LYSO的研究进展和发展方向[J]. 材料导报: 纳米与新材料专辑, 2015, 29(S1): 214-218.

    ZHOU W P, NIU W, LIU X D, et al. Research advances and development direction of scintillation crystal Ce: LYSO[J]. Materials Reports, 2015, 29(S1): 214-218. (in Chinese).
    [58]
    王佳, 岑伟, 丁雨憧, 等. 100 mm级Ca: Ce: LYSO闪烁晶体生长及闪烁性能研究[J]. 人工晶体学报, 2021, 50(10): 1946−1950. DOI: 10.3969/j.issn.1000-985X.2021.10.017.

    WANG J, CEN W, DING Y C, et al. Growth and scintillation properties of 100 mm Ca, Ce: LYSO crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1946-1950. DOI: 10.3969/j.issn.1000-985X.2021.10.017. (in Chinese).
    [59]
    狄聚青, 刘运连, 滕飞, 等. φ 80 mm×200 mm级Ce: LYSO晶体的生长与闪烁性能研究[J]. 人工晶体学报, 2019, 48(3): 374−378. DOI: 10.3969/j.issn.1000-985X.2019.03.002.

    DI J Q, LIU Y L, TENG F, et al. Growth and scintillation properties of Ce: LYSO crystal with size of 80 mm×200 mm[J]. Journal of Synthetic Crystals, 2019, 48(3): 374-378. DOI: 10.3969/j.issn.1000-985X.2019.03.002. (in Chinese).
    [60]
    GUNDACKER S. Time resolution in scintillator based detectors for positron emission tomography[D]. Vienna: Vienna University of Technology, 2014.
    [61]
    GUNDACKER S, AUFFRAY E, PAUWELS K, et al. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET[J]. Physics in Medicine and Biology, 2016, 61(7): 2802. DOI: 10.1088/0031-9155/61/7/2802.

Catalog

    Article views (686) PDF downloads (92) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return