Citation: | HU W T, LAO H, QIU A, et al. Advance in Silicon Photomultiplier for All-Digital Positron Emission Tomography[J]. CT Theory and Applications, 2024, 33(4): 421-432. DOI: 10.15953/j.ctta.2024.015. (in Chinese). |
In recent years, silicon photomultipliers (SiPMs) have emerged as preferred photoelectric conversion devices in positron emission tomography (PET) due to their outstanding performance. SiPMs possess single-photon resolution capability and time resolution below 100 ps, enabling precise photon arrival time measurements. These advances paved the way for emerging applications such as time-of-flight PET (TOF-PET), photon counting CT, and positron emission lifetime imaging, presenting new challenges to SiPM performance, the advancing of which to their physical limits has become a key focus area in next-generation SiPM research. In traditional SiPM architectures, signal processing and analog-to-digital conversion introduce noise and degrade time performance, thereby limiting the full SiPM potential. With the recent and rapid development of semiconductor manufacturing processes, SiPMs could be manufactured on standard CMOS process nodes, which marks a significant breakthrough in the SiPM field, allowing for the integration of digital logic within SiPM devices. This advancement opens the possibility of achieving more precise time, energy, and position information within a single SiPM, thereby providing potential possibilities to push SiPMs to their performance limits. In this study, we reviewed the development history, working principles, and performance parameters of SiPMs. We analyzed the limitations of traditional SiPMs, outlined key aspects of digital SiPM research, and introduced various current digital SiPM architectures. Finally, we summarized and anticipated key technologies in digital SiPMs.
[1] |
苗旺, 李翰山. 强辐射背景下光电成像探测性能计算方法[J]. 电光与控制, 2018, 25(12): 11−15. DOI: 10.3969/j.issn.1671-637X.2018.12.003.
MIAO W, LI H S. Calculation method of photoelectric imaging detection performance in strong radiation background[J]. Electronics Optics & Control, 2018, 25(12): 11−15. DOI: 10.3969/j.issn.1671-637X.2018.12.003. (in Chinese).
|
[2] |
向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响[J]. 物理学报, 2022, 71(21): 163−175.
XIANG Y Y, LI S, MA Y. Effect of pile-up of electron flow pulse from photomultiplier tube on ranging by photon counting[J]. Acta Physica Sinica, 2022, 71(21): 163−175. (in Chinese).
|
[3] |
张雨, 张健, 张国光. 采用硅光电倍增管和塑闪阵列的便携式快中子成像系统的可行性研究[J]. 核技术, 2021, 44(3): 46−53.
ZHANG Y, ZHANG J, ZHANG G G. Feasibility study of portable fast neutron imaging system using silicon photomultiplier and plastic scintillator array[J]. Nuclear Techniques, 2021, 44(3): 46−53. (in Chinese).
|
[4] |
陈星, 周畅, 刘可为, 等. 基于宽禁带半导体氧化物微纳材料的紫外探测器研究进展[J]. 中国光学, 2022, 15(5): 912−928.
CHENG X, ZHOU C, LIU K W, et al. Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide[J]. Chinese Journal of Optics, 2022, 15(5): 912−928. (in Chinese).
|
[5] |
苗泉龙, 代雷, 李佰成, 等. 基于SiPM和TCMPC的时间分辨拉曼散射测量技术研究[J]. 光谱学与光谱分析, 2018, 38(5): 1444−1450.
MIAO Q L, DAI L, LI B C, et al. Time-resolved raman scattering measurement based on SiPM and TCMPC method[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1444−1450. (in Chinese).
|
[6] |
陈建光, 倪旭翔, 袁波, 等. SiPM激光雷达阳光下探测概率性能分析[J]. 光电工程, 2021, 48(10): 29−38.
CHENG J G, NI X X, YUAN B, et al. Analysis of detection probability perf ormance of SiPM LiDAR under sunlight[J]. Opto-Electronic Engineering, 2021, 48(10): 29−38. (in Chinese).
|
[7] |
刘鸿彬, 李铭, 王凤香, 等. 一种少光子高精度多波束激光雷达系统及验证[J]. 红外与毫米波学报, 2019, 38(4): 535−541. DOI: 10.11972/j.issn.1001-9014.2019.04.021.
LIU H B, LI M, WANG F X, et al. A high accuracy multi-beam lidar system and its verification on several photons[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 535−541. DOI: 10.11972/j.issn.1001-9014.2019.04.021. (in Chinese).
|
[8] |
TN3000系列SiPM数据手册[EB/OL]. [2023-11-12]. https://www.joinbon.com/Uploads/file/20191126/20191126171114_23598.pdf.
TN3000系列SiPM数据手册[EB/OL]. [2023-11-12]. https://www.joinbon.com/Uploads/file/20191126/20191126171114_23598.pdf.
|
[9] |
C-series SiPM Sensors[EB/OL]. [2023-11-02]. https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf.
|
[10] |
AFBR-S4N33C013 NUV-HD single silicon photo multiplier[EB/OL]. [2023-11-02]. https://docs.broadcom.com/doc/AFBR-S4N33C013-DS.
|
[11] |
LECOQ P, MOREL C, PRIOR J O, et al. Roadmap toward the 10ps time-of-flight PET challenge[J]. Physics in Medicine & Biology, 2020, 65(21): 21RM01.
|
[12] |
LECOQ P. Pushing the limits in time-of-flight PET imaging[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2017, 1(6): 473−485. DOI: 10.1109/TRPMS.2017.2756674.
|
[13] |
ASCENZO N D’, ANTONECCHIA E, BRENSING A, et al. A novel high photon detection efficiency silicon photomultiplier with shallow junction in 0.35 μm CMOS[J]. IEEE Electron Device Letters, 2019, 40(9): 1471−1474. DOI: 10.1109/LED.2019.2929499.
|
[14] |
LIANG X, D’ASCENZO N, BROCKHERDE W, et al. Silicon photomultipliers with area Up to 9 mm2 in a 0.35 μm CMOS process[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 239−251. DOI: 10.1109/JEDS.2019.2893802.
|
[15] |
D’ASCENZO N, SAVELIEV V, XIE Q. China silicon photomultiplier technology[C]//2016 IEEE Photonics Conference (IPC). Waikoloa, HI, USA: IEEE, 2016.
|
[16] |
OHL R S. Light-sensitive electric device: United States, 2402662[P]. 1951-06-12.
|
[17] |
McKAY K G. Avalanche breakdown in silicon[J]. Physical Review, 1954, 94(4): 877−884. DOI: 10.1103/PhysRev.94.877.
|
[18] |
MCINTYRE R J. Theory of microplasma instability in silicon[J]. Journal of Applied Physics, 1961, 32(6): 983−995. DOI: 10.1063/1.1736199.
|
[19] |
HAITZ R H. Model for the electrical behavior of a microplasma[J]. Journal of Applied Physics, 1964, 35(5): 1370−1376. DOI: 10.1063/1.1713636.
|
[20] |
RENKER D. Geiger-mode avalanche photodiodes, history, properties and problems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 567(1): 48-56.
|
[21] |
VASILE S, WILSON R J, SHERA S, et al. High gain avalanche photodiode arrays for DIRC applications[J]. IEEE Transactions on Nuclear Science, 1999, 46(4): 848−852. DOI: 10.1109/23.790690.
|
[22] |
GHIONI M, COVA S, ZAPPA F, et al. Compact active quenching circuit for fast photon counting with avalanche photodiodes[J]. Review of Scientific Instruments, 1996, 67(10): 3440−3448. DOI: 10.1063/1.1147156.
|
[23] |
ANTICH P P, TSYGANOV E N, MALAKHOV N A, et al. Avalanche photo diode with local negative feedback sensitive to UV, blue and green light[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 389(3): 491-498.
|
[24] |
GOLOVIN V. Avalanche photodetector: Russia, 2142175[P].
|
[25] |
SAVELIEV V, GOLOVIN V. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 442(1-3): 223-229.
|
[26] |
NINKOVIĆ J, ANDRIČEK L, LIEMANN G, et al. SiMPl-novel high QE photosensor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 610(1): 142-144.
|
[27] |
韩德俊, 张国青, 胡小波, 等. 一种新结构硅光电倍增器(SiPM)及其应用研究[C]//第九届全国光电技术学术交流会论文集. 2010: 23-26.
|
[28] |
SUN F, DUAN N, LO G Q. Novel silicon photomultiplier with vertical bulk-Si quenching resistors[J]. IEEE Electron Device Letters, 2013, 34(5): 653−655. DOI: 10.1109/LED.2013.2250900.
|
[29] |
RENSCHLER M, PAINTER W, BISCONTI F, et al. Characterization of hamamatsu 64-channel TSV SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 257-267.
|
[30] |
ACERBI F, PATERNOSTER G, GOLA A, et al. High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range applications[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 1−7.
|
[31] |
D’ASCENZO N, XIE Q. Possible layout solutions for the improvement of the dark rate of geiger mode avalanche structures in the globalfoundries bcdlite 0.18 μm CMOS technology[J]. Journal of Instrumentation, 2018, 13(4): T04007−T04007. DOI: 10.1088/1748-0221/13/04/T04007.
|
[32] |
GUNDACKER S, HEERING A. The silicon photomultiplier: Fundamentals and applications of a modern solid-state photon detector[J]. Physics in Medicine & Biology, 2020, 65(17): 17TR01. DOI: 10.1088/1361-6560/ab7b2d.
|
[33] |
SAVELIEV V. Silicon photomultiplier-new Era of photon detection[M]//YOUNG K. Advances in Optical and Photonic Devices. InTech, 2010. DOI: 10.5772/7150.
|
[34] |
SEITZ P, THEUWISSEN A J. Single-photon imaging: 160[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-18443-7.
|
[35] |
ACERBI F, GUNDACKER S. Understanding and simulating SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 16-35. DOI: 10.1016/j.nima.2018.11.118.
|
[36] |
RENKER D, LORENZ E. Advances in solid state photon detectors[J]. Journal of Instrumentation, 2009, 4(4): P04004−P04004. DOI: 10.1088/1748-0221/4/04/P04004.
|
[37] |
CALÒ P P, CICIRIELLO F, PETRIGNANI S, et al. SiPM readout electronics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 57-68.
|
[38] |
PARK H, YI M, LEE J S. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: A review[J]. Biomedical Engineering Letters, 2022, 12(3): 263−283. DOI: 10.1007/s13534-022-00234-y.
|
[39] |
NAKAMURA K Z, BAN S, ICHIKAWA A K, et al. Front-end electronics for the SiPM-readout gaseous TPC for neutrinoless double-beta decay search[J]. IEEE Transactions on Nuclear Science, 2020, 67(7): 1772−1776. DOI: 10.1109/TNS.2020.2988716.
|
[40] |
BISOGNI M G, DEL GUERRA A, BELCARI N. Medical applications of silicon photomultipliers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 118-128.
|
[41] |
SCHAART D R, CHARBON E, FRACH T, et al. Advances in digital SiPMs and their application in biomedical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 31-52.
|
[42] |
FRACH T, PRESCHER G, DEGENHARDT C, et al. The digital silicon photomultiplier-principle of operation and intrinsic detector performance[C]//2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). Orlando, 2009: 1959-1965.
|
[43] |
FRACH T, PRESCHER G, DEGENHARDT C, The digital silicon photomultiplier-system architecture and performance evaluation[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. Knoxville, USA, 2010: 1722-1727. DOI: 10.1109/NSSMIC.2010.5874069.
|
[44] |
DEGENHARDT C, ZWAANS B, FRACH T, et al. Arrays of digital silicon photomultipliers-intrinsic performance and application to scintillator readout[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. Knoxville, 2010: 1954-1956. DOI: 10.1109/NSSMIC.2010.5874115.
|
[45] |
BRUNNER S E, SCHAART D R. BGO as a hybrid scintillator/cherenkov radiator for cost-effective time-of-flight PET[J]. Physics in Medicine and Biology, 2017, 62(11): 4421−4439. DOI: 10.1088/1361-6560/aa6a49.
|
[46] |
FRACH T. Optimization of the digital silicon photomultiplier for cherenkov light detection[J]. Journal of Instrumentation, 2012, 7(1): C01112−C01112. DOI: 10.1088/1748-0221/7/01/C01112.
|
[47] |
WEISSLER B, GEBHARDT P, DUEPPENBECKER P M, et al. A digital preclinical PET/MRI insert and initial results[J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2258−2270. DOI: 10.1109/TMI.2015.2427993.
|
[48] |
SCHUG D, WEHNER J, DUEPPENBECKER P M, et al. PET performance and MRI compatibility evaluation of a digital, ToF-Capable PET/MRI insert equipped with clinical scintillators[J]. Physics in Medicine and Biology, 2015, 60(18): 7045−7067. DOI: 10.1088/0031-9155/60/18/7045.
|
[49] |
VEERAPPAN C, RICHARDSON J, WALKER R, et al. A 160×128 single-photon image sensor with on-pixel 55 ps 10 b time-to-digital converter[C]//2011 IEEE International Solid-State Circuits Conference. San Francisco, CA, USA: IEEE, 2011: 312-314.
|
[50] |
MEIJLINK J R, VEERAPPAN C, SEIFERT S, et al. First measurement of scintillation photon arrival statistics using a high-granularity solid-state photosensor enabling time-stamping of up to 20, 480 single photons[C]//2011 IEEE Nuclear Science Symposium Conference Record. Valencia, Spain: IEEE, 2011: 2254-2257. DOI: 10.1109/NSSMIC.2011.6152491.
|
[51] |
NOLET F, DUBOIS F, ROY N, et al. Digital SiPM channel integrated in CMOS 65 nm with 17.5 ps FWHM single photon timing resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 912: 29-32. DOI: 10.1016/j.nima.2017.10.022.
|
[52] |
NOLET F, LEMAIRE W, DUBOIS F, et al. A 256 pixelated SPAD readout ASIC with in-pixel TDC and embedded digital signal processing for uniformity and skew correction[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 949: 162891.
|
[53] |
BERUBE B L, RHEAUME V P, PARENT S, et al. Implementation study of single photon avalanche diodes (SPAD) in 0.8 μm HV CMOS technology[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 710−718. DOI: 10.1109/TNS.2015.2424852.
|
[54] |
TABACCHINI V, WESTERWOUDT V, BORGHI G, et al. Probabilities of triggering and validation in a digital silicon photomultiplier[J]. Journal of Instrumentation, 2014, 9(6): P06016−P06016. DOI: 10.1088/1748-0221/9/06/P06016.
|
[55] |
BRUNNER S E, GRUBER L, HIRTL A, et al. A comprehensive characterization of the time resolution of the Philips Digital Photon Counter[J]. Journal of Instrumentation, 2016, 11(11): P11004−P11004. DOI: 10.1088/1748-0221/11/11/P11004.
|
[56] |
MANDAI S, VENIALGO E, CHARBON E. Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers[J]. Optics Letters, 2014, 39(3): 552. DOI: 10.1364/OL.39.000552.
|
[57] |
XIE Q, KAO C M, HSIAU Z, et al. A new approach for pulse processing in positron emission tomography[J]. IEEE Transactions on Nuclear Science, 2005, 52(4): 988−995. DOI: 10.1109/TNS.2005.852966.
|
[58] |
KIM H, KAO C M, XIE Q, et al. A multi-threshold sampling method for TOF-PET signal processing[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 602(2): 618-621.
|
[1] | YOU Long-ting, SONG Jian-guo, YU Hui-zhen, WANG Yue-lei. Analysis of the Influence Factors on the Time-Frequency Spectrum Obtained by Synchrosqueezing Wavelet Transform based on Reconstruction of Analytic Signal[J]. CT Theory and Applications, 2017, 26(3): 267-278. DOI: 10.15953/j.1004-4140.2017.26.03.02 |
[2] | ZHANG Xue-song, ZHAO Bo-shan. Cupping Artifacts Calibration in CT Image Based on Radon Transform[J]. CT Theory and Applications, 2016, 25(5): 539-546. DOI: 10.15953/j.1004-4140.2016.25.05.05 |
[3] | LIU Hai-yan, TIAN Gang, SHI Zhan-jie. The Comparison of Time-frequency Analysis Methods and Their Applications[J]. CT Theory and Applications, 2015, 24(2): 199-208. DOI: 10.15953/j.1004-4140.2015.24.02.06 |
[4] | FAN Hua, ZHAO Guo-chun, HAN Yan-jie, LIU Ming-jun, LI Xiao-qin, SUN Yong-jun. Image Fusion in Combination of the Improved IHS Transform and Wavelet Transform[J]. CT Theory and Applications, 2014, 23(5): 761-770. |
[5] | FENG Xia, SHI Chao, DING Wen-bo, FENG Yan, HAO Zhen-ping. The Complication of Spectral Analysis Based on Fourier Transform in the Tire X-ray Detection[J]. CT Theory and Applications, 2014, 23(3): 453-458. |
[6] | ZHANG Xi-le, HUANG Jing, LIU Nan, LU Li-jun, MA Jian-hua, CHEN Wu-fan. Wavelet-Transform Based Low-Dose CT Projection Filtering[J]. CT Theory and Applications, 2011, 20(2): 163-171. |
[7] | DONG Fang, HU Liang, LI Bo-lin, LI Ming, CHEN Hao, WANG Yuan, ZHANG Cheng-xin, XU Zhou. Contour Data Denoise Based on Inter-Scale Correlations of Contourlet Transform[J]. CT Theory and Applications, 2008, 17(4): 62-66. |
[8] | SUN Cun-jie, ZHANG Hong. The Study on Methods of CT Image Enhancement[J]. CT Theory and Applications, 2005, 14(4): 17-20. |
[9] | HAN Yu-sheng, LU Wei, LIU Han, LI Cong-li. Enhancement processing on Security Inspection Image Based on Db Wavelet Transform and median Filtering[J]. CT Theory and Applications, 2005, 14(1): 7-10. |
[10] | ZHONG Shi-hang. Examining Quality of Retaining Wall Made of Mortar and Stones by Means of Comparing Spectrum of Elastic Reflection Wave Frequncy[J]. CT Theory and Applications, 2002, 11(1): 1-5. |
1. |
张明霞,李玲,高兰,王玉华,孙莹,孙磊,霍萌,张春燕,王仁贵. 不同预后的抗MDA5抗体阳性IIMs患者肺部HRCT定量指标与临床研究. CT理论与应用研究. 2024(03): 351-358 .
![]() |