Citation: | WANG C Z, WANG Y F, BAI Z J. Shale-pore Semantic Segmentation Network Based on Pseudo-labeling[J]. CT Theory and Applications, 2025, 34(1): 89-98. DOI: 10.15953/j.ctta.2024.039. (in Chinese). |
Shale pore structures contribute significantly to shale gas reservoirs, with their shape, size, connectivity, and development directly affecting storage. To achieve intelligent recognition and classification of shale pores, this study proposes a shale-pore semantic segmentation network based on a pseudo-label method. A total of 251 scanning electron microscopy images of the Longmaxi Formation shale reservoir in Chongqing are used, and the Pyramid Scene Parsing Network is utilized for training. Additionally, pseudo-label generation is employed, which involves annotating only a few images and using the model’s segmentation results on unlabeled images for iterative training. Subsequently, ensemble learning is conducted to improve the model’s accuracy and generalizability. The iteratively trained model has a mean intersection-over-union (MIoU) score exceeding 0.70. Comparative experiments show that employing pseudo-labeling and ensemble learning increases the model’s MIoU by approximately 0.07. Furthermore, pseudo-labeling enhances the generalizability of neural networks while addressing the high time cost of manual annotation required in previous deep-learning segmentation methods, whereas ensemble learning stably increases the model’s accuracy.
[1] |
ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26: 916-927. DOI: 10.1016/j.marpetgeo.2008.06.004.
|
[2] |
WANG Q, CHEN X, JHA A, et al. Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1-28. DOI: 10.1016/j.rser.2013.08.065.
|
[3] |
黄磊, 申维. 页岩气储层孔隙发育特征及主控因素分析: 以上扬子地区龙马溪组为例[J]. 地学前缘, 2015, 22(1): 374-385.
HUANG L, SHEN W. Characteristics and controlling factors of the formation of pores of a shale gas reservoir: A case study from Longmaxi Formation of the Upper Yangtze region[J]. Earth Science Frontiers, 2015, 22(1): 374-385. (in Chinese).
|
[4] |
唐巍, 王彦飞. 正则化Kaczmarz算法在页岩纳米CT重构中的应用[J]. 地球物理学报, 2018, 61(11): 4598-4612. DOI: 10.6038/cjg2018L0679.
TANG W, WANG Y F. Application of regularizing Kaczmarz algorithm in shale Nano-CT reconstruction[J]. Chinese Journal of Geophysics, 2018, 61(11): 4598-4612. DOI: 10.6038/cjg2018L0679. (in Chinese).
|
[5] |
MA Q H, XU Z L, WANG Y F, et al. Shale microstructure prediction with nonsmooth sparse regularizing X-ray CT imaging[J]. Numerical Functional Analysis and Optimization, 2020, 41(14): 1717-1727. DOI: 10.1080/01630563.2020.1813168.
|
[6] |
王羽, 金婵, 汪丽华, 等. 基于SEM图像灰度水平的页岩孔隙分割方法研究[J]. 岩矿测试, 2016, 35: 595-602.
WANG Y, JIANG C, WANG L H, et al. Pore segmentation methods based on gray scale of scanning electron microscopy images[J]. Rock and Mineral Analysis, 2016, 35: 595-602. (in Chinese).
|
[7] |
WANG Y, JIANG H Q, KE Y B, et al. Investigation of pore structures of a shallow Longmaxi shale in south China using large area electron imaging and neutron scattering technique[J], Energy & Fuels, 2020, 34(7): 7974-7984.
|
[8] |
GROVER S, SAXENA V S, VATWANI T. Design of intelligent traffic control system using image segmen-tation[J]. International of Advances in Engineering & Technology, 2014, 7(5): 1462-1469.
|
[9] |
WU Y, MISRA S, SONDERGELD C, et al. Machine learning for locating organic matter and pores in scanning electron microscopy images of organic-rich shales[J]. Fuel, 2019, 253: 662-676. DOI: 10.1016/j.fuel.2019.05.017.
|
[10] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015, 3431-3440.
|
[11] |
王彦飞, 邹安祺. 基于神经网络的页岩微纳米孔隙微结构分析的正则化和最优化方法[J]. 岩石学报, 2018, 34: 281-288.
WANG Y F, ZOU A Q. Regularization and optimization methods for micro pore structure analysis of shale based on neural networks[J]. Acta Petrologica Sinica, 2018, 34: 281-288. (in Chinese).
|
[12] |
BIHANI A, DAIGLE H, SANTOS J E, et al. MudrockNet: Semantic segmentation of mudrock SEM images through deep learning[J]. Computers & Geosciences, 2022. DOI: 10.1016/J.CAGEO.2021.104952.
|
[13] |
DYSON J, MANCINI A, FRONTONI E, et al. Deep learning for soil and crop segmentation from remotely sensed data[J]. Remote Sensing, 2019, 11(16): 1859. DOI: 10.3390/rs11161859.
|
[14] |
徐述腾, 周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报, 2018, 34: 3244-3252.
XU S T, ZHOU Y Z. Artificial intelligence identification of ore minerals under microscope based on deep learning algorithm[J]. Acta Petrologica Sinica, 2018, 34: 3244-3252. (in Chinese).
|
[15] |
ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks (IJCNN), 2020, 20006215.
|
[16] |
HE R, YANG J, QI X. Re-distributing biased pseudo labels for semi-supervised semantic segmentation: A baseline investigation[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021, 6930-6940.
|
[17] |
LEE D H. Pseudo-Label: The simple and efficient semi-supervised learning method for deep neural networks[C]//CML 2013 Workshop: Challenges in RepresentationLearning (WREPL). Atlanta, Georgia, USA, 2013.
|
[18] |
LI S, WEI Z, ZHANG J, et al. Pseudo-label selection for deep semi-supervised learning[C]//2020 IEEE International Conference on Progress in Informatics and Computing (PIC). 2020: 1-5.
|
[19] |
WANG Y, WANG H, SHEN Y, et al. Semi-supervised semantic segmentation using unreliable pseudo-labels[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022, DOI: 10.48550/arXiv.2203.03884.
|
[20] |
马永生, 冯建辉, 牟泽辉, 等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学, 2012, 14(6): 22-30. DOI: 10.3969/j.issn.1009-1742.2012.06.004.
MA Y S, FENG J H, MOU Z H, et al. The potential and exploring progress of unconventional hydrocarbon resources in SINOPEC[J]. Strategic Study of CAE, 2012, 14(6): 22-30. DOI: 10.3969/j.issn.1009-1742.2012.06.004. (in Chinese).
|
[21] |
金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. (in Chinese).
|
[22] |
徐中华, 郑马嘉, 刘忠华, 等. 四川盆地南部地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 2020, 47(6): 1100-1110. DOI: 10.11698/PED.2020.06.04.
XU Z H, ZHENG M J, LIU Z H, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1100-1110. DOI: 10.11698/PED.2020.06.04. (in Chinese).
|
[23] |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, DOI: arXiv:1612.01105.
|
[24] |
FORT S, HU H, LAKSHMINARAYANAN B. Deep ensembles: A loss landscape perspective[C]//International Conference on Learning Representations (ICLR). 2020. DOI: arXiv:1912.02757.
|
1. |
史鹏达,刘孙俊,王琪凯,吴秋伶. 基于改进Stacking方法的成像测井裂缝识别. 计算机测量与控制. 2025(04): 217-224+231 .
![]() | |
2. |
程程,赵岩. 基于数据增广和伪标签生成的波阻抗反演. 石油地球物理勘探. 2025(03): 642-654 .
![]() |