ISSN 1004-4140
CN 11-3017/P
LUO H, SHEN J S, ZHANG W X, et al. Study on the Numerical Simulation of Array Sonic Logging Responses and Their Velocity Dispersion Characteristics in Fractured Formation[J]. CT Theory and Applications, 2024, 33(6): 747-760. DOI: 10.15953/j.ctta.2024.107. (in Chinese).
Citation: LUO H, SHEN J S, ZHANG W X, et al. Study on the Numerical Simulation of Array Sonic Logging Responses and Their Velocity Dispersion Characteristics in Fractured Formation[J]. CT Theory and Applications, 2024, 33(6): 747-760. DOI: 10.15953/j.ctta.2024.107. (in Chinese).

Study on the Numerical Simulation of Array Sonic Logging Responses and Their Velocity Dispersion Characteristics in Fractured Formation

More Information
  • Received Date: June 20, 2024
  • Revised Date: June 26, 2024
  • Accepted Date: June 27, 2024
  • Available Online: July 15, 2024
  • To understand the effects of fractured formation on the responses of array sonic logging, the wave propagation of array acoustic logging was simulated based on the staggered grid finite difference method and poroelastic theory. Methods of velocity dispersion analysis and attenuation estimation were carried out on simulated sonic waveforms, and the differences of velocity dispersion and wave amplitude attenuation among these wave modes were summarized. First, the velocity-stress equation in cylindrical coordinates was deduced for the Biot poroelastic model. Next, the velocity-stress wave equation was discretized by using the staggered grid finite difference method. Furthermore, the higher order finite difference format and nearly perfect match layer (NPML) were adopted to improve the efficiency and accuracy of the finite difference method. Finally, simulated sonic waveforms in formation models with a tilted fracture zone and collapsed interval were applied to the velocity dispersion analysis by using forward and back amplitudes and the phase estimation method. The results show that the time difference of the P and S wave field in the low-velocity fracture zone increases and that the attenuation amplitude changes with the dip angle of the fracture zone. The attenuation of Stoneley waves and pseudo-Rayleigh waves is enhanced when the shaft collapse expands in the radial and axial directions. The time difference of acoustic waves, velocity dispersion, and amplitude attenuation can reflect the characteristics of the fracture zone, which is of great significance to the evaluation and development of fractured reservoirs.

  • [1]
    漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.

    QI L X. Oil and gas break through in ultra-deep ordovician carbonate formations in Shuntuoguole, Uplift Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-50. (in Chinese).
    [2]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.

    JIAO F Z. Significance and prospect of ultra-deep carbonate fault karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2016, 39(2): 207-216. (in Chinese).
    [3]
    苏可嘉, 秦臻, 邓呈祥, 等. 致密砂岩裂缝填充识别及其测井响应特征——以鄂尔多斯盆地镇泾油田延长组为例[J]. 科学技术与工程, 2022, 22(21): 9095−9104. DOI: 10.3969/j.issn.1671-1815.2022.21.011.

    SU K J, QIN Z, DENG C X, et al. Fracture filling identification and logging response characteristics of tight sandstone: A case study of Yanchang Formation in Zhenjing oilfield, Ordos Basin[J]. Science Technology and Engineering, 2022, 22(21): 9095−9104. DOI: 10.3969/j.issn.1671-1815.2022.21.011. (in Chinese).
    [4]
    唐晓明, 魏周拓. 利用井中偶极声源远场辐射特性的远探测测井[J]. 地球物理学报, 2012, 55(8): 2798-2807.

    TANG X M, WEI Z T. Single-well acoustic reflection imaging using far-field radiation characteristics of a borehole dipole source[J]. Chinese Journal of Geophysics, 2012, 55(8): 2798-2807. (in Chinese).
    [5]
    陆云龙, 崔云江, 关叶钦, 等. 基于阵列声波测井的裂缝有效性定量评价方法[J]. 测井技术, 2022, 46(1): 64−70.

    LU Y L, CUI Y J, GUAN Y Q, et al. Quantitative evaluation method of fracture effectiveness based on array acoustic logging[J]. Well Logging Technology, 2022, 46(1): 64−70. (in Chinese).
    [6]
    张波, 李超, 张晋言, 等. 三维声波测井探测特性分析与处理技术应用[J]. 应用声学, 2021, 40(5): 774−784.

    ZHANG B, LI C, ZHANG J Y, et al. Analysis of detecting characteristics and application of data processing technology for 3D array acoustic logging[J]. Journal of Applied Acoustics, 2021, 40(5): 774−784. (in Chinese).
    [7]
    本建林, 车小花, 乔文孝, 等. 方位反射声波成像测井技术在井旁地质体评价中的应用[J]. 测井技术, 2021, 45(1): 23−29.

    BEN J L, CHE X H, QIAO W X, et al. Application of near borehole geologic reflector evaluation using azimuthal acoustic reflection imaging logging[J]. Well Logging Technology, 2021, 45(1): 23−29. (in Chinese).
    [8]
    楚泽涵, 徐凌堂, 尹庆文, 等. 远探测反射波声波测井方法实验研究进展[J]. 测井技术, 2005, 29(2): 98−101. DOI: 10.3969/j.issn.1004-1338.2005.02.003.

    CHU Z H, XU L T, YIN Q W, et al. Progress of lab study on remote exploration acoustic reflection logging methods[J]. Well Logging Technology, 2005, 29(2): 98−101. DOI: 10.3969/j.issn.1004-1338.2005.02.003. (in Chinese).
    [9]
    乔文孝, 车小花, 李刚, 等. 反射声波成像测井的物理模拟[J]. 石油物探, 2004, (3): 294-297.

    QIAO W X, CHE X H, LI G, et al. The physical modeling of acoustic reflection image logging[J]. Geophysical Prospecting for Petroleum, 2004, 43(3): 294-297. (in Chinese).
    [10]
    陶果, 何峰江, 王兵, 等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学(D辑: 地球科学), 2008, 38(S1): 166−173.

    TAO G, HE J F, WANG B. Study on numerical modeling of three-dimension wave field of acoustic reflection image logging in formation[J]. Science in China: Esrarth Science, 2008, 38(S1): 166−173. (in Chinese).
    [11]
    TANG X M. Imaging near-borehole structure using directional acoustic-wave measurement[J]. Geophysics, 2004, 69(6): 1378−1386. DOI: 10.1190/1.1836812.
    [12]
    TANG X M, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211−WCA223. DOI: 10.1190/1.3227150.
    [13]
    NOLTE B, CHENG A. Estimation of nonorthogonal shear wave polarizations and shear wave velocities from four-component dipole logs[R]. USA: The Annual Technology Report of The Earth Resources Laboratory (ERL), MIT, 1996.
    [14]
    NOLTE B, RAO R, HUANG X J. Dispersion analysis of split flexural waves[R]. USA: The Annual Technology Report of the Earth Resources Laboratory (ERL), MIT, 1997.
    [15]
    LI W, TAO G, MATUSZYK J P, et al. Forward and backward amplitude and phase estimation method for dispersion analysis of borehole sonic measurements[J]. Geophysics, 2015, 80(3): D295−D308. DOI: 10.1190/geo2014-0298.1.
    [16]
    王瑞甲, 乔文孝, 鞠晓东. 一种多通道声波测井信号频散分析方法[J]. 测井技术, 2012, 36(2): 135−140. DOI: 10.3969/j.issn.1004-1338.2012.02.006.

    WANG R J, QIAO W X, JU X D. A multi-channel acoustic logging signal dispersion analysis method[J]. Well Logging Technology, 2012, 36(2): 135−140. DOI: 10.3969/j.issn.1004-1338.2012.02.006. (in Chinese).
    [17]
    刘航, 陈彦竹, 姚梦麟, 等. 基于纵波频散谱的缝洞碳酸盐岩储层有效性评价[J]. 测井技术, 2021, 45(3): 330−335.

    LIU H, CHEN Y Z, YAO M L, et al. Effectiveness evaluation of fractured vuggy carbonate reservoir based on P-wave dispersion spectrum[J]. Well Logging Technology, 2021, 45(3): 330−335. (in Chinese).
    [18]
    ZHANG C, CHEN D, HU H S, et al. A method for transforming aliased modes to true modes based on density clustering and Riemann sheets selection in acoustic logging dispersion inversion[J]. Geophysics, 2024, 89(1): D15−D29. DOI: 10.1190/geo2022-0706.1.
    [19]
    CHEN D, GUAN W, ZHANG C, et al. High-resolution inversion for dispersion characteristics of acoustic logging waveforms[J]. Journal of Geophysics and Engineering, 2020, 17(3): 439−450. DOI: 10.1093/jge/gxaa003.
    [20]
    GUAN W, HU H S, HE X. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation[J]. Journal of the Acoustical Society of America, 2009, 125(4): 1942−1950. DOI: 10.1121/1.3081518.
    [21]
    LI X F. PML absorbing boundary condition for seismic numerical modeling by convolutional differentiator in fluid-saturated porous media[J]. Journal of Earth Science, 2011, (22): 377−385.
    [22]
    GUAN W, HU H S. The parameter averaging technique in finite-difference modeling of elastic waves in combined structures with solid, fluid and porous subregions[J]. Communications in Computational Physics, 2011, 10(3): 695-715.
    [23]
    COLLINO F, TSOGKA C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1): 294−307. DOI: 10.1190/1.1444908.
    [24]
    PAN C D, ABUBAKAR A, HABASHY T M. An effective perfectly matched layer design for acoustic fourth-order frequency-domain finite-difference scheme[J]. Geophysical Journal International, 2012, 188(1): 211−222. DOI: 10.1111/j.1365-246X.2011.05244.x.
    [25]
    WANG H, TAO G, SHANG X F, et al. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes[J]. Applied Geophysics, 2013, 10: 384−396. DOI: 10.1007/s11770-013-0400-6.
    [26]
    李宁, 王克文, 刘鹏, 等. 不同裂缝条件下斯通利波幅度衰减实验[J]. 石油勘探与开发, 2021, 48(2): 258−265. DOI: 10.11698/PED.2021.02.03.

    LI N, WANG K W, LIU P, et al. Experimental study on attenuation of Stoneley wave under different fracture factors[J]. Petroleum Exploration and Development, 2021, 48(2): 258−265. DOI: 10.11698/PED.2021.02.03. (in Chinese).
    [27]
    聂南方,郭智奇,刘财. 改进的地震AVAZ裂缝弱度反演方法及其在致密砂岩储层中的应用[J]. 地球与行星物理论评(中英文), 2024, 55(3): 358−368. DOI: 10.19975/j.dqyxx.2023-02. DOI: 10.19975/j.dqyxx.2023-025.

    Nie N F, Guo Z Q, Liu C. Application of the improved seismic AVAZ inversion method for fracture characterization of a tight sandstone gas reservoir in the Ordos Basin[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(3): 358-368. DOI: 10.19975/j.dqyxx.2023-025. (in Chinese).
    [28]
    王晨光, 蔺学旻, 周显华, 等. 基于地震多属性融合的断层识别与评价——以塔里木盆地SHB地区碳酸盐岩缝洞型储层为例[J]. CT理论与应用研究, 2021, 30(1): 35−48. DOI: 10.15953/j.1004-4140.2021.30.01.04.

    WANG C G, LIN X M, ZHOU X H, et al. Fault detection and evaluation based on fusion of multiple seismic attributes——An example of fractured and vuggy carbonate formation in SHB area,tarimu basin[J]. CT Theory and Applications, 2021, 30(1): 35-48. DOI: 10.15953/j.1004-4140.2021.30.01.04. (in Chinese).
    [29]
    徐冰, 李文博, 王易安, 等. 不规则井眼的斯通利波反射数值模拟[J]. 科学技术与工程, 2012, 20(9): 2029-2032.

    XU B, LI W B, WANG Y, et al. Numerical simulation of stonely wave reflection in irregular borehole[J]. Science Technology and Engineering, 2012, 12(9): 2029-2032. (in Chinese).
  • Cited by

    Periodical cited type(1)

    1. 李振宇,何碧竹,贠晓瑞,蔡志慧,张盛生,刘若涵,马绪宣,陈希节. 共和盆地东北部花岗岩型干热岩井下裂缝系统及其构造成因. 岩石学报. 2024(12): 3964-3983 .

    Other cited types(0)

Catalog

    Article views (277) PDF downloads (32) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return