ISSN 1004-4140
CN 11-3017/P
SHI W L, ZOU X, CHEN C Y, et al. Differentiated Backprojection Reconstruction Method for Square Cross-section Fielid-of-view Rotational Computer Lithography[J]. CT Theory and Applications, 2025, 34(4): 1-11. DOI: 10.15953/j.ctta.2024.113. (in Chinese).
Citation: SHI W L, ZOU X, CHEN C Y, et al. Differentiated Backprojection Reconstruction Method for Square Cross-section Fielid-of-view Rotational Computer Lithography[J]. CT Theory and Applications, 2025, 34(4): 1-11. DOI: 10.15953/j.ctta.2024.113. (in Chinese).

Differentiated Backprojection Reconstruction Method for Square Cross-section Fielid-of-view Rotational Computer Lithography

More Information
  • Received Date: June 24, 2024
  • Revised Date: September 01, 2024
  • Accepted Date: September 03, 2024
  • Available Online: November 21, 2024
  • With advancements in modern industry, computed tomography (CT) has played a significant role in nondestructive testing. However, owing to the limitations in the imaging field of view and X-ray penetration capability, CT faces challenges in the scanning and imaging of plate-like objects. To inspect plate-like objects, computer lithography (CL) has been developed by modifying the scanning geometry and reconstruction algorithms. CL reconstruction methods are inspired by CT reconstruction techniques and include analytical and iterative reconstruction methods. Filtered backprojection algorithms are fast, but often result in significant discrepancies from the true values, and iterative methods, although more accurate than analytical reconstruction, are usually time-consuming. This study draws on the differentiated backprojection (DBP) reconstruction method of circular trajectory fan-beam CT to derive a DBP reconstruction method for a square cross-sectional field-of-view (FOV) rotational CL. Using both simulated data and actual printed circuit board scanning data for reconstruction, the image quality of the DBP method was found to be similar to that of the filtered back projection algorithm, with certain advantages in addressing projection truncation challenges.

  • [1]
    曹大泉, 王雅霄, 阙介民, 等. 基于SART算法的CL硬化伪影校正方法研究[J/OL]. 原子能科学技术, 2014, 48(7): 1314-1320. DOI: 10.7538/yzk.2014.48.07.1314.

    CAO D Q, WANG Y X, QUE J M, et al. Research of beam hardening correction method for CL system based on SART algorithm[J/OL]. Atomic Energy Science and Technology, 2014, 48(7): 1314-1320. DOI:10.7538/yzk.2014.48.07.1314. (in Chinese).
    [2]
    YANG M, WANG G, LIU Y. New reconstruction method for x-ray testing of multilayer printed circuit board[J/OL]. Optical Engineering, 2010, 49(5): 056501-056501. DOI: 10.1117/1. 3430629.
    [3]
    MYAGOTIN A, VOROPAEV A, HELFEN L, et al. Efficient volume reconstruction for parallel-beam computed laminography by filtered backprojection on Multi-Core clusters[J/OL]. IEEE transactions on image processing, 2013, 22(12): 5348-5361. DOI: 10.1109/TIP.2013.2285600.
    [4]
    VOROPAEV A, MYAGOTIN A, HELFEN L, et al. Direct Fourier inversion reconstruction algorithm for computed laminography[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2368-2378. DOI: 10.1109/TIP.2016.2546547.
    [5]
    SUN L, ZHOU G, QIN Z, et al. A reconstruction method for cone-beam computed laminography based on projection transformation[J]. Measurement Science and Technology, 2021, 32(4): 045403.
    [6]
    GORDON R, BENDER R, HERMAN G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471, IN1, 477-476, IN2, 481. DOI: 10.1016/0022-5193(70)90109-8.
    [7]
    GILBERT P. Iterative methods for the three-dimensional reconstruction of an object from projections[J]. Journal of Theoretical Biology, 1972, 36(1): 105-117. DOI: 10.1016/0022-5193(72)90180-4.
    [8]
    ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. DOI: 10.1016/0161-7346(84)90008-7.
    [9]
    HEBERT T, LEAHY R. A generalized EM algorithm for 3-D bayesian reconstruction from poisson data using gibbs priors[J/OL]. IEEE Transactions on Medical Imaging, 1989, 8(2): 194-202. DOI: 10.1109/42.24868.
    [10]
    DOBBINSobbins J T, GODFREY D J. Digital X-ray tomosynthesis: Current state of the art and clinical potential[J/OL]. Physics in Medicine & Biology, 2003, 48(19): R65-R106. DOI: 10.1088/0031-9155/48/19/R01.
    [11]
    LAURITSCH G, HAERER W H. Theoretical framework for filtered back projection in tomosynthesis[C]// Proceedings of SPIE: 1998: 1127-1137. DOI: 10.1117/12.310839.
    [12]
    LEVAKHINA Y M, MVLLER J, DUSCHKA R L, et al. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features[J/OL]. Medical Physics (Lancaster), 2013, 40(3): 031106-n/a. DOI: 10.1118/1.4789592.
    [13]
    ZhAO Y, XU J, LI H, et al. Edge information diffusion-based reconstruction for cone beam computed laminography[J]. IEEE transactions on image processing, 2018, 27(9): 4663-4675. DOI: 10.1109/TIP.2018.2845098.
    [14]
    NOO F, CLACKDOYLE R, PACK J D. A two-step Hilbert transform method for 2D image reconstruction[J/OL]. Physics in Medicine & Biology, 2004, 49(17): 3903-3923. DOI: 10.1088/0031-9155/49/17/006.
    [15]
    ZOU Y, PAN X. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[J/OL]. Physics in medicine & biology, 2004, 49(6): 941-959. DOI: 10.1088/0031-9155/49/6/006.
    [16]
    PACK J D, NOO F, CLACKDOYLE R. Cone-beam reconstruction using the backprojection of locally filtered projections[J/OL]. IEEE Transactions on Medical Imaging, 2005, 24(1): 70-85. DOI: 10.1109/TMI.2004.837794.
    [17]
    KUDO H, SUZUKI T, Rashed E A. Image reconstruction for sparse-view CT and interior CT: Introduction to compressed sensing and differentiated backprojection[J]. Quantitative Imaging in Medicine and Surgery, 2013, 3(3): 147.
    [18]
    TANG S, TANG X. Radial differential interior tomography and its image reconstruction with differentiated backprojection and projection onto convex sets[J]. Medical Physics, 2013, 40(9): 091914.
    [19]
    HAN Y, YE J C. One network to solve all ROIs: Deep learning CT for any ROI using differentiated backprojection[J]. Medical Physics, 2019, 46(12): e855-e872.
    [20]
    ERNST P, ROSE G, NVRNBERGERA. Sparse view deep differentiated backprojection for circular trajectories in cbct[C]//Proceedings of the 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2021: 463-466.
    [21]
    ZOU X, SHI W L, DU M G, et al. A square cross-section FOV rotational CL (SC-CL) and its analytical reconstruction method. 2024.
    [22]
    HAN Y, KIM J, YE J C. Differentiated backprojection domain deep learning for conebeam crtifact removal[J/OL]. IEEE transactions on medical imaging, 2020, 39(11): 3571-3582. DOI:10. 1109/TMI.2020.3000341.
  • Cited by

    Periodical cited type(3)

    1. 张明辉,徐涛,田小波,唐国彬,刘震,白志明. 虚拟震源地震探测方法及其应用. 地球与行星物理论评(中英文). 2025(02): 215-224 .
    2. 郭云飞,雷建设,关鹏虎. 海南岛及邻区中小地震重定位. CT理论与应用研究(中英文). 2025(02): 191-204 .
    3. 夏心茹,江国明,赵大鹏. 郯庐断裂中南段地壳速度结构与地震活动性研究. CT理论与应用研究(中英文). 2025(02): 163-174 .

    Other cited types(0)

Catalog

    Article views (228) PDF downloads (26) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return