ISSN 1004-4140
CN 11-3017/P
LI Y Z, CHEN Z Q, ZHANG L Y, et al. Research and Application Progress of Dual-energy CT in Prostate Lesions[J]. CT Theory and Applications, 2025, 34(1): 65-72. DOI: 10.15953/j.ctta.2024.114. (in Chinese).
Citation: LI Y Z, CHEN Z Q, ZHANG L Y, et al. Research and Application Progress of Dual-energy CT in Prostate Lesions[J]. CT Theory and Applications, 2025, 34(1): 65-72. DOI: 10.15953/j.ctta.2024.114. (in Chinese).

Research and Application Progress of Dual-energy CT in Prostate Lesions

More Information
  • Received Date: June 24, 2024
  • Revised Date: July 15, 2024
  • Accepted Date: July 25, 2024
  • Available Online: August 11, 2024
  • Prostate lesions are common in middle-aged and elderly men. Dual-energy CT (DECT) can capture projection data at high and low X-ray energies in a single scan, significantly enhancing its ability to differentiate substances compared with traditional CT. DECT not only provides routine anatomical information of lesions, tissues, and organs, but also generates virtual single-energy spectral images, virtual decalcification images, effective atomic number diagrams, iodine maps, electron cloud density maps, and other energy spectral images through post-processing. Additionally, DECT derives relevant quantitative parameters such as iodine concentration, standardized iodine concentration, and slope of the energy spectrum decay curve, aiding in the functional evaluation of diseased tissues. This capability is crucial for the early detection and qualitative and quantitative evaluation of prostate lesions. Numerous studies have shown that DECT has great potential for the differential diagnosis of prostate lesions, preoperative staging, and proton therapy. This article reviews the research and application advancements of DECT in prostate lesions and explores future research directions.

  • [1]
    HOUNSFIELD G N. Computerized transverse axial scanning (tomography). 1. Description of system[J]. The British Journal of Radiology, 1973, 46(552): 1016-1022. DOI: 10.1259/0007-1285-46-552-1016.
    [2]
    JOHNSON T R, KRAUSS B, SEDLMAIR M, et al. Material differentiation by dual energy CT: Initial experience[J]. European Radiology, 2007, 17(6): 1510-1517. DOI: 10.1007/s00330-006-0517-6.
    [3]
    SO A, NICOLAOU S. Spectral computed tomography: Fundamental principles and recent developments[J]. Korean Journal of Radiology, 2021, 22(1): 86-96. DOI: 10.3348/kjr.2020.0144.
    [4]
    TAKUMI K, HAKAMADA H, NAGANO H, et al. Usefulness of dual-layer spectral CT in follow-up examinations: Diagnosing recurrent squamous cell carcinomas in the head and neck[J]. Japanese Journal of Radiology, 2021, 39(4): 324-332. DOI: 10.1007/s11604-020-01071-8.
    [5]
    BABA A, KUROKAWA R, KUROKAWA M, et al. Dual-energy computed tomography for improved visualization of internal jugular chain neck lymph node metastasis and nodal necrosis in head and neck squamous cell carcinoma[J]. Japanese Journal of Radiology, 2023, 41(12): 1351-1358. DOI: 10.1007/s11604-023-01460-9.
    [6]
    RAJIAH P S, KAMBADAKONE A, ANANTHAKRISHNAN L, et al. Vascular applications of dual-energy computed tomography[J]. Radiologic Clinics of North America, 2023, 61(6): 1011-1029. DOI: 10.1016/j.rcl.2023.05.005.
    [7]
    LUO Y H, MEI X L, LIU Q R, et al. Diagnosing cervical lymph node metastasis in oral squamous cell carcinoma based on third-generation dual-source, dual-energy computed tomography[J]. European Radiology, 2023, 33(1): 162-171. DOI: 10.1007/s00330-022-09033-6.
    [8]
    CHANG H Y, LIU C K, HUANG H M. Material decomposition using dual-energy CT with unsupervised learning[J]. Physical and Engineering Sciences in Medicine, 2023, 46(4): 1607-1617. DOI: 10.1007/s13246-023-01323-7.
    [9]
    LV P, LIN X Z, LI J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: Recently introduced spectral CT method[J]. Radiology, 2011, 259(3): 720-729. DOI: 10.1148/radiol.11101425.
    [10]
    ZUO T, CHEN Y, ZHENG H, et al. Detection of bone marrow edema in osteonecrosis of the femoral head using virtual noncalcium dual-energy computed tomography[J]. European Journal of Radiology, 2021, 139: 109681. DOI: 10.1016/j.ejrad.2021.109681.
    [11]
    KIM C, KIM W, PARK S J, et al. Application of dual-energy spectral computed tomography to thoracic oncology imaging[J]. Korean Journal of Radiology, 2020, 21(7): 838-850. DOI: 10.3348/kjr.2019.0711.
    [12]
    Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework[J]. Clinical Pharmacology and Therapeutics, 2001, 69(3): 89-95. DOI: 10.1067/mcp.2001.113989.
    [13]
    LERNER L B, MCVARY K T, BARRY M J, et al. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: Aua guideline part I-initial work-up and medical management[J]. The Journal of Urology, 2021, 206(4): 806-817. DOI: 10.1097/JU.0000000000002183.
    [14]
    LI S, ZENG X T, RUAN X L, et al. Simultaneous transurethral resection of bladder cancer and prostate may reduce recurrence rates: A systematic review and meta-analysis[J]. Experimental and Therapeutic Medicine, 2012, 4(4): 685-692. DOI: 10.3892/etm.2012.660.
    [15]
    郝丽, 刘爱连, 汪禾清, 等. CT能谱成像鉴别膀胱后壁癌与前列腺增生突入膀胱[J]. 中国医学影像技术, 2013, 29(2): 269-272. DOI: 10.13929/j.1003-3289.2013.02.028.

    HAO L, LIU A L, WANG H Q, et al. Gemstone spectral imaging in differential diagnosis of posterior wall bladder cancer and prostate hyperplasia protruding into the bladder[J]. Chinese Journal of Medical Imaging Tech-nology, 2013, 29(2): 269-272. DOI: 10.13929/j.1003-3289.2013.02.028. (in Chinese).
    [16]
    CHEN A, LIU A, LIU J, et al. Application of dual-energy spectral CT imaging in differential diagnosis of bladder cancer and benign prostate hyperplasia[J]. Medicine, 2016, 95(52): e5705. DOI: 10.1097/MD.0000000000005705.
    [17]
    蔡忠刚, 杨爱萍. 能谱CT定量参数鉴别良性前列腺增生与膀胱癌[J]. 兰州大学学报(医学版), 2021, 47(3): 41-45. DOI: 10.13885/j.issn.1000-2812.2021.03.009.

    CAI Z G, YANG A P. Identification of benign prostatic hyperplasia and bladder cancer based on spectral CT quantitative parameters[J]. Journal of Lanzhou University (Medical Sciences), 2021, 47(3): 41-45. DOI: 10.13885/j.issn.1000-2812.2021.03.009. (in Chinese).
    [18]
    SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [19]
    张晓斐, 李剑颖, 邹爱华, 等. 宝石能谱CT碘含量测定对前列腺增生与前列腺癌的鉴别诊断价值[J]. 临床放射学杂志, 2013, 32(6): 842-846. DOI: 10.13437/j.cnki.jcr.2013.06.021.

    ZHANG X F, LI J Y, ZOU A H, et al. Dual energy spectral CT imaging in-differentiation of prostatic carcinoma from benign prostatic hyperplasia[J]. Journal of Clinical Radiology, 2013, 32(6): 842-846. DOI: 10.13437/j.cnki.jcr.2013.06.021. (in Chinese).
    [20]
    ZHANG X F, LU Q, WU L M, et al. Quantitative iodine-based material decomposition images with spectral CT imaging for differentiating prostatic carcinoma from benign prostatic hyperplasia[J]. Academic Radiology, 2013, 20(8): 947-956. DOI: 10.1016/j.acra.2013.02.011.
    [21]
    邓明, 王良, 张进华, 等. 宝石能谱CT多参数成像在鉴别前列腺癌与前列腺增生结节中的价值[J]. 临床放射学杂志, 2016, 35(1): 118-122. DOI: 10.13437/j.cnki.jcr.2016.01.033.

    DENG M, WANG L, ZHANG J H, et al. Gemstone spectral lmaging with dual-energy CT for the differential diagnosis of prostate cancer and benign prostatic hyperplasia using[J]. Journal of Clinical Radiology, 2016, 35(1): 118-122. DOI: 10.13437/j.cnki.jcr.2016.01.033. (in Chinese).
    [22]
    张晓斐, 许建荣, 朱正飞, 等. 能谱CT显示前列腺病灶的最佳单能量研究[J]. 放射学实践, 2016, 31(8): 747-751. DOI: 10.13609/j.cnki.1000-0313.2016.08.017.

    ZHANG X F, XU J R, ZHU Z F, et al. Study on optimal keV speetral CT monochromatie imaging for detecton of peripheral prostatie lesions[J]. Radiologic Practice, 2016, 31(8): 747-751. DOI: 10.13609/j.cnki.1000-0313.2016.08.017. (in Chinese).
    [23]
    刘雅楠, 王金凤, 乔英. 双层探测器光谱CT对前列腺癌的诊断价值[J]. 医疗卫生装备, 2023, 44(5): 59-63. DOI: 10.19745/j.1003-8868.2023095.

    LIU Y N, WANG J F, QIAO Y. Diagnostic value of dual-layer detector spectral CT for prostate cancer[J]. Chinese Medical Equipment Journal, 2023, 44(5): 59-63. DOI: 10.19745/j.1003-8868.2023095. (in Chinese).
    [24]
    OSIMANI M, BELLINI D, DI CRISTOFANO C, et al. Perfusion MDCT of prostate cancer: Correlation of perfusion CT parameters and immunohistochemical markers of angiogenesis[J]. American Journal of Roentgenology, 2012, 199(5): 1042-1048. DOI: 10.2214/AJR.11.8267.
    [25]
    CULLU N, KANTARCI M, OGUL H, et al. Feasibility study of CT perfusion imaging for prostate carcinoma[J]. European Radiology, 2014, 24(9): 2236-2244. DOI: 10.1007/s00330-014-3212-z.
    [26]
    张古沐阳, 孙昊, 薛华丹, 等. 第3代双源CT低剂量前列腺CT灌注的可行性[J]. 中国医学科学院学报, 2017, 39(1): 101-106. DOI: 10.3881/j.issn.1000-503X.2017.01.017.

    ZHANG G M Y, SUN H, XUE H D, et al. Feasibility study of low-dose prostate CT perfusion on third-generation dual-source CT[J]. Acta Academiae Medicinae Sinicae, 2017, 39(1): 101-106. DOI: 10.3881/j.issn.1000-503X.2017.01.017. (in Chinese).
    [27]
    SAOKAR A, ISLAM T, JANTSCH M, et al. Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging[J]. Clinical Imaging, 2010, 34(5): 361-366. DOI: 10.1016/j.clinimag.2009.07.004.
    [28]
    LENNARTZ S, TäGER P, ZOPFS D, et al. Lymph node assessment in prostate cancer: Evaluation of iodine quantification with spectral detector CT in correlation to PSMA PET/CT[J]. Clinical Nuclear Medicine, 2021, 46(4): 303-309. DOI: 10.1097/RLU.0000000000003496.
    [29]
    GONG X Q, TAO Y Y, WANG R, et al. Application of diffusion weighted imaging in prostate cancer bone metastasis: Detection and therapy evaluation[J]. Anti-cancer Agents in Medicinal Chemistry, 2021, 21(15): 1950-1956. DOI: 10.2174/1871520621666210118092641.
    [30]
    HUANG H C, SRINIVASAN R, SUN Y, et al. Detection of lumbar spine osseous metastases using dual-energy CT: Phantom results and preliminary clinical validation[J]. American Journal of Roentgenology, 2019, 212(2): 402-410. DOI: 10.2214/AJR.18.19933.
    [31]
    ISHIWATA Y, HIEDA Y, KAKI S, et al. Improved diagnostic accuracy of bone metastasis detection by Water-HAP associated to non-contrast CT[J]. Diagnostics (Basel, Switzerland), 2020, 10(10): 853. DOI: 10.3390/diagnostics10100853.
    [32]
    LIU M C, HO C C, LIN Y T, et al. Opportunistic screening with multiphase contrast-enhanced dual-layer spectral CT for osteoblastic lesions in prostate cancer compared with bone scintigraphy[J]. Scientific Reports, 2024, 14(1): 5310. DOI: 10.1038/s41598-024-55427-5.
    [33]
    WERNER S, KRAUSS B, HORGER M. Dual-energy CT-based bone marrow imaging in multiple myeloma: Assessment of focal lesions in relation to disease status and MRI findings[J]. Academic Radiology, 2022, 29(2): 245-254. DOI: 10.1016/j.acra.2021.01.029.
    [34]
    GONG H, BAFFOUR F I, GLAZEBROOK K N, et al. Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT[J]. Medical Physics, 2022, 49(10): 6346-6358. DOI: 10.1002/mp.15934.
    [35]
    BURKE M C, GARG A, YOUNGNER J M, et al. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT[J]. Skeletal Radiology, 2019, 48(4): 605-613. DOI: 10.1007/s00256-018-3087-1.
    [36]
    WU Y Y, FAN K H. Proton therapy for prostate cancer: Current state and future perspectives[J]. The British Journal of Radiology, 2022, 95(1131): 20210670. DOI: 10.1259/bjr.20210670.
    [37]
    WOHLFAHRT P, MöHLER C, ENGHARDT W, et al. Refinement of the Hounsfield look-up table by retrospective application of patient-specific direct proton stopping-power prediction from dual-energy CT[J]. Medical Physics, 2020, 47(4): 1796-1806. DOI: 10.1002/mp.14085.
    [38]
    PETERS N, WOHLFAHRT P, HOFMANN C, et al. Reduction of clinical safety margins in proton therapy enabled by the clinical implementation of dual-energy CT for direct stopping-power prediction[J]. Radiotherapy and Oncology, 2022, 166: 71-78. DOI: 10.1016/j.radonc.2021.11.002.
    [39]
    ZHU J, PENFOLD S N. Dosimetric comparison of stopping power calibration with dual-energy CT and single-energy CT in proton therapy treatment planning[J]. Medical Physics, 2016, 43(6): 2845-2854. DOI: 10.1118/1.4948683.
    [40]
    FALLER F K, MEIN S, ACKERMANN B, et al. Pre-clinical evaluation of dual-layer spectral computed tomography-based stopping power prediction for particle therapy planning at the Heidelberg Ion Beam Therapy Center[J]. Physics in Medicine and Biology, 2020, 65(9): 095007. DOI: 10.1088/1361-6560/ab735e.
    [41]
    BÄR E, LALONDE A, ROYLE G, et al. The potential of dual-energy CT to reduce proton beam range uncertainties[J]. Medical Physics, 2017, 44(6): 2332-2344. DOI: 10.1002/mp.12215.
    [42]
    BERTHOLD J, KHAMFONGKHRUEA C, PETZOLDT J, et al. First-in-human validation of CT-based proton range prediction using prompt gamma imaging in prostate cancer treatments[J]. International Journal of Radiation Oncology, Biology, Physics, 2021, 111(4): 1033-1043. DOI: 10.1016/j.ijrobp.2021.06.036.
    [43]
    LEE H H, PARK Y K, DUAN X, et al. Convolutional neural network based proton stopping-power-ratio estimation with dual-energy CT: A feasibility study[J]. Physics in Medicine and Biology, 2020, 65(21): 215016. DOI: 10.1088/1361-6560/abab57.
  • Related Articles

    [1]YAN Wei, JIN Erhu, WEI Wei, YANG Yang, LIU Chao, DONG Lining, ZHANG Juan, HAN Xue. Exploring the Influencing Factors of Acute Necrotic Accumulation Outcome[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.295
    [2]DENG Kan, XU Hui, CHEN Lingling, GONG Lingyan, LI Shuping. Imaging Diagnosis of a Rare Case of Cervical Necrotizing Fasciitis (CNF) in the Nasopharynx: A Clinical Case Analysis[J]. CT Theory and Applications, 2023, 32(2): 271-277. DOI: 10.15953/j.ctta.2023.011
    [3]HAO Fene, SUN Zhenting, GUO Youmin, ZHAO Lei, LIU Aishi. Reliable Study on Computer-aided Evaluation of the Severity of Acute Pulmonary Embolism[J]. CT Theory and Applications, 2020, 29(4): 456-464. DOI: 10.15953/j.1004-4140.2020.29.04.08
    [4]FANG Fang, TAN Wei, HU Shaoping. Feasibility Analysis of MCTSI Combined with D-dimmer in Evaluating the Clinical Prognosis of Patients with Acute Pancreatitis[J]. CT Theory and Applications, 2019, 28(1): 139-146. DOI: 10.15953/j.1004-4140.2019.28.01.15
    [5]YAN Yuan-yuan, JIN Er-hu, ZHANG Jie, YANG Zheng-han. Study of Diagnostic Value of CT and MRI for Local Complications in Acute Pancreatitis[J]. CT Theory and Applications, 2018, 27(3): 393-400. DOI: 10.15953/j.1004-4140.2018.27.03.13
    [6]DU Li-juan, JIN Er-hu. Advances in Imaging Methods and Diagnosis of Chronic Pancreatitis[J]. CT Theory and Applications, 2018, 27(2): 269-280. DOI: 10.15953/j.1004-4140.2018.27.02.16
    [7]WU De-hong, CHEN Shao-bo, MU Hua-guo, GONG Xiao-hong, FU Chuan-ming, CHEN Wen. CT and MRI Manifestations of Autoimmune Pancreatitis[J]. CT Theory and Applications, 2015, 24(4): 611-619. DOI: 10.15953/j.1004-4140.2015.24.04.16
    [8]ZHANG Bin-bin, ZHANG Jie, JIN Er-hu, ZHANG Shu-tian, ZHENG Xin, YANG Zheng-han, MA Da-qing. CT Features and Follow-up Analysis of Autoimmune Pancreatitis[J]. CT Theory and Applications, 2015, 24(3): 421-428. DOI: 10.15953/j.1004-4140.2015.24.03.12
    [9]YANG Xiao-sheng, CHEN Qin, CHEN Xi-feng. Spiral CT Diagnosis of Acute Pancreatitis Classification Method and its Clinical Significance[J]. CT Theory and Applications, 2012, 21(4): 735-740.
    [10]ZHOU Le-fu, XIANG Zi-yun. Correlation of CT Findings of Acute Pancreatitis with Changing of Serum and Urine Amykase[J]. CT Theory and Applications, 2004, 13(2): 54-56.

Catalog

    Article views (155) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return