Citation: | GUO Y, LIU J L. Advances in CT Functional Imaging and Artificial Intelligence for Assessing Esophageal Varices in Cirrhosis[J]. CT Theory and Applications, xxxx, x(x): 1-7. DOI: 10.15953/j.ctta.2024.116. (in Chinese). |
Esophageal varices (EV), which result from portal hypertension associated with cirrhosis, along with the consequent upper gastrointestinal bleeding, represent one of the most prevalent complications. Endoscopy is regarded as the "gold standard" for diagnosing varices; however, its invasive nature, coupled with poor patient compliance and the inconvenience of short-term follow-up, restricts its use in patients at low risk of bleeding. Consequently, there is a pressing need to identify a noninvasive imaging method that can accurately diagnose EV, evaluate their severity, and predict the risk of potential bleeding. In recent years, research focusing on the application of computed tomography (CT) functional imaging and novel artificial intelligence techniques in the context of EV has gained significant attention. The integration of these approaches may offer a new strategy for the effective diagnosis of portal hypertension and esophageal varices. This article aims to review the current research status and advancements in the use of CT for diagnosing EV, with the goal of assisting clinical diagnosis and treatment.
[1] |
徐小元, 丁惠国, 李文刚等. 肝硬化诊治指南[J]. 实用肝脏病杂志, 2019, 22(6): 770−786. DOI: 10.3969/j.issn.1672-5069.2019.06.004.
XU X Y, DING H G, LI W G, et al. Chinese guidelines on the management of liver cirrhosis[J]. Journal of Practical Hepatology, 2019, 22(6): 770−786. DOI: 10.3969/j.issn.1672-5069.2019.06.004.
|
[2] |
SHEENA B S, HIEBERT L, HAN H, et al. Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The lancet Gastroenterology & hepatology, 2022, 7(9): 796−829. DOI: 10.1016/S2468-1253(22)00124-8.
|
[3] |
LI Y, LI L, WENG H L, et al. Computed tomography vs liver stiffness measurement and magnetic resonance imaging in evaluating esophageal varices in cirrhotic patients: A systematic review and meta-analysis[J]. World Journal of Gastroenterology, 2020, 26(18): 2247−2267. DOI: 10.3748/wjg.v26.i18.2247.
|
[4] |
GINèS P, KRAG A, ABRALDES J G, et al. Liver cirrhosis[J]. Lancet, 2021, 398(10308): 1359−1376. DOI: 10.1016/S0140-6736(21)01374-X.
|
[5] |
de Franchis R, Baveno VI Faculty. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension[J]. Journal of Hepatology, 2015, 63(3): 743−752. DOI: 10.1016/j.jhep.2015.05.022.
|
[6] |
BOSCH J. Portal Hypertension and Cirrhosis: From Evolving Concepts to Better Therapies[J]. Clinical liver disease(Hoboken), 2020, 15(Suppl 1): S8−S12. DOI: 10.1002/cld.844.
|
[7] |
REIBERGER T, SCHWABL P, TRAUNER M, et al. Measurement of the hepatic venous pressure gradient and transjugular liver biopsy[J]. Journal of visualized experiments: JoVE, 2020, (160). DOI: 10.3791/58819.
|
[8] |
GARCIA-TSAO G, ABRALDES J G, BERZIGOTTI A, et al. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases[J]. Hepatology, 2017, 65(1): 310−335. DOI: 10.1002/hep.28906.
|
[9] |
马关华, 陈小宇, 梁宇豪, 等. 多排螺旋CT门静脉成像技术在食管胃底静脉曲张中的应用[J]. 中外医学研究, 2021, 19(3): 63−65. DOI: 10.14033/j.cnki.cfmr.2021.03.024.
MA G H, CHEN X Y, LIANG Y H, et al. Application of Multidetector Computed Tomography Portal Venography in Esophageal and Gastric Varices[J]. Chinese and Foreign Medical Research, 2021, 19(3): 63−65. DOI: 10.14033/j.cnki.cfmr.2021.03.024.
|
[10] |
ZHOU H Y, CHEN T W, ZHANG X M, et al. The diameter of the originating vein determines esophageal and gastric fundic varices in portal hypertension secondary to posthepatitic cirrhosis[J]. Clinics (Sao Paulo, Brazil), 2012, 67(6): 609−614. DOI: 10.6061/clinics/2012(06)11.
|
[11] |
MANCHEC B, PHAM E, NOOR M, et al. Contrast-Enhanced CT May Identify High-Risk Esophageal Varices in Patients With Cirrhosis[J]. American journal of roentgenology, 2020, 215(3): 617−623. DOI: 10.2214/AJR.19.22474.
|
[12] |
XIE W, CHEN F X, ZHU L Y, et al. Risk assessment of first upper gastrointestinal bleeding using computerized tomoscanning in esophageal varices patients with cirrhosis and portal hypertension[J]. Medicine, 2020, 99(5): e18923. DOI: 10.1097/MD.0000000000018923.
|
[13] |
CARAIANI C , PETRESC B , POP A , et al. Can the computed tomographic aspect of porto-systemic circulation in cirrhotic patients be associated with the presence of variceal hemorrhage?[J]. Medicina, 2020, 56(6): 301. DOI: 10.3390/medicina56060301.
|
[14] |
SALAHSHOUR F, MEHRABINEJAD M M, RASHIDI SHAHPASANDI M H, et al. Esophageal variceal hemorrhage: The role of MDCT characteristics in predicting the presence of varices and bleeding risk[J]. Abdominal radiology (New York), 2020, 45(8): 2305−2314. DOI: 10.1007/s00261-020-02585-5.
|
[15] |
WaN S, WEI Y, ZHANG X, et al. CT-derived quantitative liver volumetric parameters for prediction of severe esophageal varices and the risk of first variceal hemorrhage[J]. European journal of radiology, 2021, 144: 109984. DOI: 10.1016/j.ejrad.2021.109984.
|
[16] |
MAHMOUDI S, BERNATZ S, ALTHOFF F C, et al. Dual-energy CT based material decomposition to differentiate intrahepatic cholangiocarcinoma from hepatocellular carcinoma[J]. European Journal of Radiology, 2022, 156: 110556. DOI: 10.1016/j.ejrad.2022.110556.
|
[17] |
LEE M H, PARK H J, KIM J N, et al. Virtual non-contrast images from dual-energy CT angiography of the abdominal aorta and femoral arteries: comparison with true non-contrast CT images[J]. The British Journal of Radiology, 2022, 95(1138): 20220378. DOI: 10.1259/bjr.20220378.
|
[18] |
SIEGEL M J, RAMIREZ-GIRALDO J C. Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications[J]. Radiology, 2019, 291(2): 286−297. DOI: 10.1148/radiol.2019182289.
|
[19] |
WANG J, ZHANG L, CHENG S M, et al. The evaluation of portal hypertension in cirrhotic patients with spectral computed tomography[J]. Acta Radiologica, 2023, 64(3): 918−925. DOI: 10.1177/02841851221101356.
|
[20] |
GUO S L, SU L N, ZHAI Y N, et al. The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis[J]. Clinical Radiology, 2017, 72(3): 242−246. DOI: 10.1016/j.crad.2016.10.003.
|
[21] |
BAK S, KIM JE, BAE K, et al. Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis[J]. European Radiology, 2020, 30(10): 5317−5326. DOI: 10.1007/s00330-020-06876-9.
|
[22] |
CICERO G, MAZZIOTTI S, SILIPIGNI S, et al. Dual-energy CT quantification of fractional extracellular space in cirrhotic patients: comparison between early and delayed equilibrium phases and correlation with oesophageal varices[J]. La Radiologia Medica, 2021, 126(6): 761−767. DOI: 10.1007/s11547-021-01341-z.
|
[23] |
Berzigotti A. Advances and challenges in cirrhosis and portal hypertension[J]. BMC Medicine, 2017, 15(1): 200. DOI: 10.1186/s12916-017-0966-6.
|
[24] |
HAN X, AN W, CAO Q , et al. Noninvasive evaluation of esophageal varices in cirrhotic patients based on spleen hemodynamics: a dual-energy CT study[J]. European Radiology, 2020, 30(6): 3210-3216. DOI: 10.1007/s00330-020-06680-5.
|
[25] |
LENNARTZ S, CAO J, PISUCHPEN N, et al. Intra-patient variability of iodine quantification across different dual-energy CT platforms: assessment of normalization techniques[J]. European Radiology, 2024, 34(8): 5131−5141. DOI: 10.1007/s00330-023-10560-z.
|
[26] |
赵光明, 韩丹. CT灌注成像原理与技术[J]. 中国医学影像技术, 2003, 19(5): 636−638. DOI: 10.13929/j.1003-3289.2003.05.062.
|
[27] |
TALAKIĆ E, SCHAFFELLNER S, KNIEPEISS D, et al. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?[J]. European Radiology, 2017, 27(10): 4173−4180. DOI: 10.1007/s00330-017-4788-x.
|
[28] |
YAN C, HAN X, LIANG X, et al. Non-invasive evaluation of esophageal varices in patients with liver cirrhosis using low-dose splenic perfusion CT[J]. European Journal of Radiology, 2022, 152: 110326. DOI: 10.1016/j.ejrad.2022.110326.
|
[29] |
MOTOSUGI U, ICHIKAWA T, SOU H, et al. Multi-organ perfusion CT in the abdomen using a 320-detector row CT scanner: preliminary results of perfusion changes in the liver, spleen, and pancreas of cirrhotic patients[J]. European journal of radiology, 2012, 81(10): 2533−2537. DOI: 10.1016/j.ejrad.2011.11.054.
|
[30] |
SAUTER AW, SPIRA D, SCHULZE M, et al. Explanations for the heterogeneity of splenic enhancement derived from blood flow kinetic measurements using dynamic contrast-enhanced CT (DCE-CT)[J]. Acta radiologica, 2014, 55(6): 645−653. DOI: 10.1177/0284185113503322.
|
[31] |
周欢. CT灌注肾峰值模型评估食管胃底静脉曲张破裂出血风险的应用价值[D]. 南华大学, 2022. DOI: 10.27234/d.cnki.gnhuu.2022.000666.
|
[32] |
DONG J, ZHANG Y, WU Y F, et al. Computed tomography perfusion in differentiating portal hypertension: A correlation study with hepatic venous pressure gradient[J]. World Journal of Gastrointestinal Surgery, 2023, 15(4): 664−673. DOI: 10.4240/wjgs.v15.i4.664.
|
[33] |
WANG L, ZHANG Y, WU Y F, et al. Computed tomography perfusion in liver and spleen for hepatitis B virus-related portal hypertension: A correlation study with hepatic venous pressure gradient[J]. World Journal of Gastroenterology, 2022, 28(42): 6068−6077. DOI: 10.3748/wjg.v28.i42.6068.
|
[34] |
LIU Y, NING Z, ÖRMECI N, et al. Deep Convolutional Neural Network-Aided Detection of Portal Hypertension in Patients With Cirrhosis[J]. Clinical Gastroenterology and Hepatology, 2020, 18(13): 2998-3007. e5. DOI: 10.1016/j.cgh.2020.03.034.
|
[35] |
MENG D, WEI Y, FENG X, et al. CT-Based Radiomics Score Can Accurately Predict Esophageal Variceal Rebleeding in Cirrhotic Patients[J]. Frontiers in Medicine, 2021, 8: 745931. DOI: 10.3389/fmed.2021.745931.
|
[36] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. European Journal of Cancer, 2012, 48(4): 441−446. DOI: 10.1016/j.ejca.2011.11.036.
|
[37] |
PARK H J, PARK B, LEE S S. Radiomics and Deep Learning: Hepatic Applications[J]. Korean journal of Radiology, 2020, 21(4): 387−401. DOI: 10.3348/kjr.2019.0752.
|
[38] |
YAN Y, LI Y, FAN C, et al. A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients[J]. Hepatology International, 2022, 16(2): 423−432. DOI: 10.1007/s12072-021-10292-6.
|
[39] |
LIU H, SUN J, LIU G, et al. Establishment of a non-invasive prediction model for the risk of oesophageal variceal bleeding using radiomics based on CT[J]. Clinical Radiology, 2022, 77(5): 368−376. DOI: 10.1016/j.crad.2022.01.046.
|
[40] |
LIN Y, LI L, YU D, et al. A novel radiomics-platelet nomogram for the prediction of gastroesophageal varices needing treatment in cirrhotic patients[J]. Hepatology international, 2021, 15(4): 995−1005. DOI: 10.1007/s12072-021-10208-4.
|
[41] |
LIU Z, XU L, QIN N, et al. Prediction of esophageal and gastric varices rebleeding for cirrhotic patients based on deep learning[J]. Biomedical Signal Processing and Control, 2023, 81: 104420. DOI: 10.1016/J.BSPC.2022.104420.
|
[42] |
LI LJ, LIN Y K, YU D X, et al. A Multi-Organ Fusion and LightGBM Based Radiomics Algorithm for High-Risk Esophageal Varices Prediction in Cirrhotic Patients[J]. Ieee Access, 2021, 9: 15041−15052. DOI: 10.1109/Access.2021.3052776.
|
[43] |
LEE M, LEE S S, CHOI W M, et al. An index based on deep learning-measured spleen volume on CT for the assessment of high-risk varix in B-viral compensated cirrhosis[J]. European Radiology, 2021, 31(5): 3355−3365. DOI: 10.1007/s00330-020-07430-3.
|
[44] |
DENG H, QI X, GUO X. Diagnostic Accuracy of APRI, AAR, FIB-4, FI, king, lok, forns, and fibroindex scores in predicting the presence of esophageal varices in liver cirrhosis: A systematic review and meta-analysis[J]. Medicine, 2015, 94(42): e1795. DOI: 10.1097/MD.0000000000001795.
|
[45] |
李欣忆, 李娇娇, 李莹莹, 等. 基于APRI和PALBI构建的列线图对肝硬化并发食管胃底静脉曲张破裂出血的预测价值[J]. 临床肝胆病杂志, 2024, 40(3): 521−526. DOI: 10.12449/JCH240314.
LI X Y, LI J J, LI Y Y, et al. Establishment of a nomogram model for predicting liver cirrhosis with esophagogastric variceal bleeding based on aspartate aminotransferase-to-platelet ratio index and platelet-albumin-bilirubin score[J]. Journal of Clinical Hepatology, 2024, 40(3): 521−526. DOI: 10.12449/JCH240314.
|
[46] |
汤泽宇, 顾菲, 周健文, 等. CT参数联合FIB-4和血清VEGF水平预测乙型肝炎肝硬化患者并发食管静脉曲张效能分析[J]. 实用肝脏病杂志, 2024, 27(4): 579−582. DOI: 10.3969/j.issn.1672-5069.2024.04.022.
TANG Z Y, GU F, ZHOU J W, et al. Diagnostic efficacy of CT parameters and FIB-4 and serum VEGF levels in predicting esophageal varices in patients with hepatitis B-induced liver cirrhosis[J]. Journal of Practical Hepatology, 2024, 27(4): 579−582. DOI: 10.3969/j.issn.1672-5069.2024.04.022.
|
[47] |
KUMAR S, DUAN Q, WU R, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Advanced Drug Delivery Reviews, 2021, 176: 113869. DOI: 10.1016/j.addr.2021.113869.
|
[48] |
张成孟, 丁治民, 孙宵宇, 等. 定量CT肝脏脂肪含量联合临床指标预测肝硬化患者食管胃底静脉曲张破裂出血风险的初步研究[J]. 放射学实践, 2024, 39(7): 902−906. DOI: 10.13609/j.cnki.1000-0313.2024.07.008.
ZHANG C M, DING Z M, SUN X Y, et al. Quantitative CT liver fat content combined with clinical indicators in the prediction of the risk of esophagogastric variceal bleeding in patients with liver cirrhosis[J]. Radiologic Practice, 2024, 39(7): 902−906. DOI: 10.13609/j.cnki.1000-0313.2024.07.008.
|
[49] |
LUO R, GAO J, GAN W, et al. Clinical-radiomics nomogram for predicting esophagogastric variceal bleeding risk noninvasively in patients with cirrhosis[J]. World Journal of Gastroenterology, 2023, 29(6): 1076−1089. DOI: 10.3748/wjg.v29.i6.1076.
|
[50] |
LIU H, SUN J, LIU G, et al. Establishment of a non-invasive prediction model for the risk of oesophageal variceal bleeding using radiomics based on CT[J]. Clinical Radiology, 2022, 77(5): 368−376. DOI: 10.1016/j.crad.2022.01.046.
|