ISSN 1004-4140
CN 11-3017/P
YE X X, LIU Y F, TANG B R, et al. Energy Spectral Single-energy Technique Based on Deep Learning Image Reconstruction: Study on Image Quality of Thoracic Aorta under Low Contrast Agent Flow Rate[J]. CT Theory and Applications, 2024, 33(6): 683-691. DOI: 10.15953/j.ctta.2024.118. (in Chinese).
Citation: YE X X, LIU Y F, TANG B R, et al. Energy Spectral Single-energy Technique Based on Deep Learning Image Reconstruction: Study on Image Quality of Thoracic Aorta under Low Contrast Agent Flow Rate[J]. CT Theory and Applications, 2024, 33(6): 683-691. DOI: 10.15953/j.ctta.2024.118. (in Chinese).

Energy Spectral Single-energy Technique Based on Deep Learning Image Reconstruction: Study on Image Quality of Thoracic Aorta under Low Contrast Agent Flow Rate

More Information
  • Received Date: June 27, 2024
  • Revised Date: August 18, 2024
  • Accepted Date: August 20, 2024
  • Available Online: September 02, 2024
  • Objective: To investigate the value of combining a deep learning image reconstruction algorithm and an energy spectral single-energy technique to improve the image quality of the thoracic aorta with a low contrast agent flow rate. Materials and Methods: The imaging data of 50 patients with thoracic aorta energy spectral CTA scans with contrast agent flow rate ≤1.5 mL/s from January 2016 to December 2023 at Fujian Medical University Union Hospital were retrospectively analyzed and whose thoracic aorta enhancement was insufficient (thoracic aorta CT value <250 HU) on 120 kVp-like images. ASIR-V and two deep-learning image reconstructions (DLIR-M and DLIR-H) were performed on kVp-like images, 40 keV, 50 keV, and 60 keV single-energy images. The objective image quality parameters (thoracic aorta CT value, noise, SNR, CNR, and BHA) were compared with the subjective image quality scores. Images with thoracic aorta CT value ≥250HU and subjective score ≥3 were defined as meeting the diagnostic requirements. Results: CT values were 40 keV>50 keV>60 keV>120 kVp-like images. There was no statistically significant difference in the thoracic aortic CT values between the different reconstruction algorithms for the same type/energy level. SD, SNR, CNR, and BHA values were 40 keV>50 keV>60 keV>120 kVp-like images, respectively, and SD and BHA values were ASIR-V40%>DLIR-M>DLIR-H. The SNR and CNR of all the DLIR images (DLIR-M/H) at different energy levels were higher than those of the ASIR-V images. For subjective scoring, at the same energy level, DLIR-H>DLIR-M>ASIR-V, and under the same reconstruction algorithm: 40 keV>50 keV>60 keV>120 kVp-like. All differences were statistically significant. All cases could obtain successful diagnostic images through 40 keV-DLIR-H. Conclusion: Spectral single-energy images combined with deep learning reconstruction algorithms can provide objective parameters that meet the diagnostic needs of thoracic aorta CT images with a poor enhancement effect under a low contrast agent flow rate while significantly improving the overall image quality.

  • [1]
    中华医学会放射学分会心胸学组. 主动脉夹层CT血管成像标注专家共识[J]. 中华放射学杂志, 2024, 58(3): 250−257. DOI: 10.3760/cma.j.cn112149-20230719-00010.

    Cardiothoracic Group of the Chinese Society of Radiology of the Chinese Medical Association. Expert consensus on the CT angiography annotation of aortic dissection[J]. Chinese Journal of Radiology, 2024, 58(3): 250−257. DOI: 10.3760/cma.j.cn112149-20230719-00010. (in Chinese).
    [2]
    陈琳钰, 方姝, 陈勇, 等. 虚拟单能图像与常规CT图像的图像质量对比[J]. CT理论与应用研究, 2022, 31(2): 219−226. DOI: 10.15953/j.ctta.2021.041.

    CHEN L Y, FANG S, CHEN Y, et al. Comparison of image quality between virtual monochromatic and conventional CT images[J]. CT Theory and Applications, 2022, 31(2): 219−226. DOI: 10.15953/j.ctta.2021.041. (in Chinese).
    [3]
    KIM J H, YOON H J, LEE E, et al. Validation of deep-learning image reconstruction for low-dose chest computed tomography: Emphasis on image quality and noise[J]. Korean Society of Radiology, 2021, (1). DOI: 10.3348/KJR.2020.0116.
    [4]
    LIU P, WANG M, WANG Y, et al. Impact of a deep-learning-based optimization algorithm on image quality of low-dose coronary CT angiography with noise reduction: A prospective study[J]. Academic Radiology, 2020, 27(9). DOI: 10.1016/j.acra.2019.11.010.
    [5]
    中华医学会放射学分会. CT检查技术专家共识[J]. 中华放射学杂志, 2016, 50(12): 916−928. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.004.

    Chinese Medical Association and Chinese Society of Radiology. Expert consensus on CT technology[J]. Chinese Journal of Radiology, 2016, 50(12): 916−928. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.004. (in Chinese).
    [6]
    高艳山, 刘辉佳, 张雪宁. 光谱CT单能级重建技术优化强化欠佳肺动脉CT成像图像质量[J]. 中国医学影像学杂志, 2023, 31(10): 1054-1058. DOI: 10.3969/j.issn.1005-5185.2023.10.010.

    GAO Y S, LIU H J, ZHANG X. Image quality of sub-optimally enhanced pulmonary improved by angiography virtual monoenergetic imaging based on a novel spectral CT[J]. Chinese Journal of Medical Imaging, 2023, 31(10): 1054-1058. DOI:10.3969/j.issn.1005-5185.2023.10.010. (in Chinese).
    [7]
    WANG J J, CHI X T, WANG W W, et al. Analysis of contrast-enhanced spectral chest CT optimal monochromatic imaging combined with ASIR and ASIR-V[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(6): 1930−1938.
    [8]
    陈坤源, 徐新申, 章思竹. 256层螺旋CT idose4迭代重建结合“三低”主动脉增强成像的可行性[J]. 现代医用影像学, 2023, 32(12): 2366−2369. DOI: 10.3969/j.issn.1006-7035.2023.12.051.
    [9]
    刘建民, 杨鹏飞, 李翯. 全面认识血管损伤, 推动学科融合发展[J]. 第二军医大学学报, 2021, 42(2): 122−126. DOI: 10.16781/j.0258-879x.2021.02.0122.

    LIU J M, YANG P F, LI H. To fully understand vascular impairment from the perspective of discipline integration[J]. Academic Journal of Second Military Medical University, 2021, 42(2): 122−126. DOI: 10.16781/j.0258-879x.2021.02.0122. (in Chinese).
    [10]
    辛彦杰, 姜慧杰, 刘冬敏, 等. 能谱CT单能量联合ASIR-V优化下腔静脉成像的最佳方案探索[J]. 中华全科医师杂志, 2023, 22(4): 404−410. DOI: 10.3760/cma.j.cn114798-20220823-00868.

    XIN Y J, JIANG H J, LIU D M, et al. Optimizing imaging of inferior vena cava by application of spectral CT single energy combined with ASIR-V[J]. Chinese Journal of General Practitioners, 2023, 22(4): 404−410. DOI: 10.3760/cma.j.cn114798-20220823-00868. (in Chinese).
    [11]
    佘梦琦, 成焕伟, 吴文泽. Revolution CT单能量成像在胸部增强中优化大血管显示[J]. 中国CT和MRI杂志, 2024, 22(5): 97−99. DOI: 10.3969/j.issn.1672-5131.2024.05.031.

    SHE M Q, CHENG H W, WU W Z. Revolution CT monoenergetic imaging in chest angiography optimize the display of large blood vessels[J]. Chinese Journal of CT and MRI, 2024, 22(5): 97−99. DOI: 10.3969/j.issn.1672-5131.2024.05.031. (in Chinese).
    [12]
    PARK C, CHOO K S, JUNG Y, et al. CT iterative vs deep learning reconstruction: Comparison of noise and sharpness[J]. European Radiology, 2021, 31(5): 3156−3164. DOI: 10.1007/s00330-020-07358-8.
    [13]
    田杜雪, 宋兰, 隋昕, 等. 深度学习重建在低辐射剂量CT肺动脉成像中的临床应用价值[J]. 中华放射学杂志, 2022, 56(5): 563−568. DOI: 10.3760/cma.j.cn112149-20210511-00467.

    TIAN D X, SONG L, SUI X, et al. The clinical value of deep learning reconstruction in low-dose CT pulmonary angiography[J]. Chinese Journal of Radiology, 2022, 56(5): 563−568. DOI: 10.3760/cma.j.cn112149-20210511-00467. (in Chinese).
    [14]
    KIM I, KANG H, YOON H J, et al. Deep learning-based image reconstruction for brain CT: Improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)[J]. Neuroradiology, 2020, 63(6): 905−912. DOI: 10.1007/s00238-020-01738-5.
    [15]
    刘方韬, 刘崔是, 陈勇, 等. 深度学习重建算法的图像质量体模研究[J]. CT理论与应用研究, 2022, 31(3): 351−356. DOI: 10.15953/j.ctta.2021.061.

    LIU F T, LIU C S, CHEN Y, et al. Image quality assessment for deep learning image reconstruction algorithm: A phantom study[J]. CT Theory and Applications, 2022, 31(3): 351−356. DOI: 10.15953/j.ctta.2021.061. (in Chinese).
    [16]
    陈依林, 刘元芬, 王莉莉, 等. 深度学习重建算法对低kV逆血流扫描下肢动脉CT血管成像图像质量的影响[J]. 中华放射学杂志, 2022, 56(11): 1188−1194. DOI: 10.3760/cma.j.cn112149-20220225-00159.

    CHEN Y L, LIU Y F, WANG L L, et al. The effects of deep-learning image reconstruction algorithm on image quality of lower extremity CT angiography with low kV and reverse flow direction scanning[J]. Chinese Journal of Radiology, 2022, 56(11): 1188−1194. DOI: 10.3760/cma.j.cn112149-20220225-00159. (in Chinese).
    [17]
    吕培杰, 耿琪, 刘娜娜, 等. 基于深度学习的CT图像重建算法临床初步应用进展[J]. 中华放射学杂志, 2022, 56(11): 1261−1266. DOI: 10.3760/cma.j.cn112149-20220810-00665.

    LV P J, GENG Q, LIU N N, et al. Preliminary clinical application of deep learning-based image reconstruction for CT[J]. Chinese Journal of Radiology, 2022, 56(11): 1261−1266. DOI: 10.3760/cma.j.cn112149-20220810-00665. (in Chinese).
    [18]
    王宁, 聂佩, 杨光杰, 等. 自适应迭代技术(ASIR-V)不同级别重建对于低剂量CT图像质量影响的研究[J]. 医学影像学杂志, 2022, 32(2): 264−268. DOI: 10.3969/j.issn.1006-9011.2022.2.yxyxxzz202202023.

    WANG N, NIE P, YANG G J, et al. Research on ASIR-V reconstruction levels to improve the quality of low-dose CT images[J]. Journal of Medical Imaging, 2022, 32(2): 264−268. DOI: 10.3969/j.issn.1006-9011.2022.2.yxyxxzz202202023. (in Chinese).
    [19]
    PONTANA F, PAGNIEZ J, FLOHR T, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients[J]. European Radiology, 2011, 21(3): 627−635. DOI: 10.1007/s00330-010-1990-5.
    [20]
    曹磊, 朱小倩, 邹超, 等. 优化对比剂注射时间在减少颈部CTA对比剂硬化伪影中的应用[J]. 影像研究与医学应用, 2023, 7(2): 54−57. DOI: 10.3969/j.issn.2096-3807.2023.02.018.

    CAO L, ZHU X Q, ZOU C, et al. Application of optimizing injection time of contrast agent in reducing contrast hardening artifacts in CTA of neck[J]. Journal of Imaging Research and Medical Application, 2023, 7(2): 54−57. DOI: 10.3969/j.issn.2096-3807.2023.02.018. (in Chinese).
  • Related Articles

    [1]JIANG Nan, YANG Yang, LI Gangfeng, QU Xiaoyan, ZHANG Yabin, CHEN Han, CUI Guangbin. Advances in Dual-energy CT for the Diagnosis of Solitary Pulmonary Nodules[J]. CT Theory and Applications, 2024, 33(6): 733-739. DOI: 10.15953/j.ctta.2024.066
    [2]LIU Qiang, ZENG Yongming, SUN Jingkun, LOU Hao, XIA Xianmei, GE Bing, ZHOU Yu, ZHENG Yue. Analysis of Influencing Factors on Pulmonary Nodule Detection by Computed Tomography with Artificial Intelligence: A Phantom Study[J]. CT Theory and Applications, 2024, 33(4): 471-477. DOI: 10.15953/j.ctta.2023.190
    [3]SU Yinchen, ZHANG Xiaoqin. Artificial Intelligence-assisted Diagnosis in Detecting Lung Nodules and Differentiating Benign from Malignant Nodules[J]. CT Theory and Applications, 2024, 33(3): 325-331. DOI: 10.15953/j.ctta.2023.128
    [4]LIU Yuting, LIU Aishi. Research Progress of Radiomics in the Diagnosis of Pulmonary Nodules[J]. CT Theory and Applications, 2023, 32(4): 573-578. DOI: 10.15953/j.ctta.2022.056
    [5]CHEN Xinhua, HUANG Xiaoqi, LI Jianlong, GUO Youmin. Evaluation of the Diagnostic Value of Pulmonary Nodules Based on Two AI Software[J]. CT Theory and Applications, 2023, 32(4): 493-499. DOI: 10.15953/j.ctta.2022.087
    [6]LIU Na, ZHAO Zhengkai, ZOU Jiayu, LI Yi, LIU Jian. Evaluation of Detection and Diagnostic Efficiency of Pulmonary Nodules by Chest CT Based on Artificial Intelligence[J]. CT Theory and Applications, 2021, 30(6): 709-715. DOI: 10.15953/j.1004-4140.2021.30.06.06
    [7]ZHU Lijuan, ZHU Xiaoming, SONG Dongdong, ZHANG Qing, WU Fei. AI Detection Efficiency of Pulmonary Nodules Under Dual-source CT with Different Tube Voltages[J]. CT Theory and Applications, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10
    [8]CHEN Mailin, LIU Yuliang, QI Liping, SUN Yingshi. Imaging Characteristics of Pulmonary Nodules on Public Network Image Consultation During the Outbreak of New Coronavirus Pneumonia[J]. CT Theory and Applications, 2020, 29(6): 643-650. DOI: 10.15953/j.1004-4140.2020.29.06.02
    [9]CHEN Mai-Lin, SUN Ying-Shi. Clinical Value of Spectral CT Imaging with Rapid Voltage Switching for Pulmonary Nodules[J]. CT Theory and Applications, 2019, 28(6): 701-708. DOI: 10.15953/j.1004-4140.2019.28.06.08
    [10]XIANG Zi-yun, SHI Chang-zheng, ZHOU Jie, ZHAN Yong, LUO Liang-ping. Application of Gray-scale Texture Feature in the Diagnosis of Pulmonary Nodules on CT Imaging[J]. CT Theory and Applications, 2013, 22(1): 155-160.
  • Cited by

    Periodical cited type(6)

    1. 李新经,袁珊. CA199和HE4及VEGF在卵巢交界性和恶性上皮性肿瘤中的表达及诊断价值. 医药论坛杂志. 2025(02): 211-215 .
    2. 王丽雯,李静芳,李晓红,余鑫. 血清miR-200c表达水平与复发性卵巢癌的相关性及临床意义. 中国性科学. 2024(03): 58-61 .
    3. 岳红 ,汤进 ,陈钢 . 血清ALP、HE4联合SII指数与卵巢癌肿瘤良恶性程度相关性及预后影响因素分析. 临床和实验医学杂志. 2024(22): 2412-2416 .
    4. 张建泉,符纪宁,蔡淑华,沈智勇. 卵巢癌MRI表现与Ki-67表达及预后的关系. 中国CT和MRI杂志. 2023(06): 130-132 .
    5. 王丽雯,李静芳,李晓红,余鑫,杨伟,高艳章. 上皮性卵巢癌患者血清miR-200a、miR-200b水平变化及意义. 山东医药. 2023(26): 58-61 .
    6. 谢敏霞,林琳. HE4与CA125联合检测在妇科肿瘤诊断中的作用评价. 深圳中西医结合杂志. 2023(15): 64-67 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return