Citation: | WU R, NING K J, GU J F, et al. Development and Validation of a Nomogram Model for Lung Adenocarcinoma with Ground Glass Nodules Using AI Quantitative Parameters and CT Signs[J]. CT Theory and Applications, xxxx, x(x): 1-9. DOI: 10.15953/j.ctta.2024.208. (in Chinese). |
Objective: We aimed to develop a predictive model for lung adenocarcinoma with ground glass nodules (GGNs) based on artificial intelligence (AI) and computed tomography (CT) features, and to evaluate the model’s predictive value. Methods: A total of 261 GGNs from 225 patients diagnosed after surgery at our hospital were retrospectively collected and randomly divided into a training set and a validation set in an 8:2 ratio. The GGNs were classified into preneoplastic lesions and adenocarcinoma groups based on pathological results. AI-derived quantitative parameters and CT signs from the training set were compared between the two groups, and independent risk factors were identified using multivariate logistic regression. A predictive model and nomogram were developed, and model performance was assessed through the area under the ROC curve (AUC), calibration curve, and clinical decision curve analysis (DCA). The model was subsequently validated using the validation set. Results: Kappa test indicated good agreement between the two attending physicians in their assessment of CT signs. Baseline analysis revealed no statistical differences between variables in both training and validation sets. In the training set, lobulation sign (OR=3.147, 95% CI: 1.303-7.601), vacuole sign (OR=2.563, 95% CI: 1.109-5.922), vascular abnormalities (OR=3.551, 95% CI: 1.545-8.164), long diameter (OR=1.154, 95% CI: 1.014-1.312), and mean CT value (OR=1.006, 95% CI: 1.003-1.009) were identified as independent risk factors for adenocarcinoma in GGN after univariate and multivariate analysis. The predictive model constructed based on this information showed good discrimination ability, with an AUC of 0.901 (95% CI: 0.859-0.943) in the training set and an AUC of 0.896 (95% CI: 0.810-0.983) in the validation set, significantly outperforming individual risk factors. The Hosmer-lemeshow test demonstrated good model fit in both sets and DCA showed its strong clinical applicability. Conclusion: The model based on AI and CT signs demonstrated good predictive performance for GGN lung adenocarcinoma, providing valuable insights for clinical decision-making.
[1] |
中华医学会呼吸病学分会. 早期肺癌诊断中国专家共识(2023年版)[J]. 中华结核和呼吸杂志, 2023, 46(1): 1-18. DOI: 10.3760/cma.j.cn112147-20220712-00592.
CHINESE THORACIC SOCIETY. Chinese expert consensus on diagnosis of early lung cancer (2023 Edition)[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2023, 46(1): 1-18. DOI: 10.3760/cma.j.cn112147-20220712-00592.
|
[2] |
ZHANG P J, LI T R, TAO X M, et al. HRCT features between lepidic-predominant type and other pathological subtypes in early-stage invasive pulmonary adenocarcinoma appearing as a ground-glass nodule[J]. BMC Cancer, 2021, 21(1): 1124. DOI: 10.1186/s12885-021-08821-5.
|
[3] |
NICHOLSON A G, TSAO M S, BEASLEY M B, et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015[J]. Journal of thoracic oncology, 2022, 17(3): 362-387. DOI: 10.1016/j.jtho.2021.11.003.
|
[4] |
龚海鹏, 司海峰, 邢金丽, 等. MSCT多平面重建技术用于磨玻璃结节样肺腺癌的鉴别诊断价值研究[J]. 中国CT和MRI杂志, 2023, 21(2): 52-54. DOI: 10.3969/j.issn.1672-5131.2023.02.019.
GONG H P, SI H F, XING J L, et al. Value of MSCT multiplanar reconstruction in the differential diagnosis of ground glass nodular lung adenocarcinoma[J]. Chinese Journal of CT and MRI, 2023, 21(2): 52-54. DOI: 10.3969/j.issn.1672-5131.2023.02.019.
|
[5] |
WANG T, SHE Y, YANG Y, et al. Radiomics for survival risk stratification of clinical and pathologic stage IA pure-solid non-small cell lung cancer[J]. Radiology, 2022, 302(2): 425-434. DOI: 10.1148/radiol.2021210109.
|
[6] |
王思齐, 付泽辉, 邱建国. 表现为磨玻璃结节的肺腺癌诊断研究进展[J]. 国际医学放射学杂志, 2021, 44(1): 67-71,85. DOI: 10.19300/j.2021.Z18282.
WANG S Q, FU Z H, QIU J G. Progressin the diagnosis of lung adenocarcinoma manifesting as ground glass nodule[J]. International Journal of Medical Radiology, 2021, 44(1): 67-71,85. DOI: 10.19300/j.2021.Z18282.
|
[7] |
QIU T C, RU X S, YIN K, et al. Two nomograms based on CT features to predict tumor invasiveness of pulmonary adenocarcinoma and growth in pure GGN: A retrospective analysis[J]. Japanese Journal of Radiology, 2020, 38(8): 761-770. DOI: 10.1007/s11604-020-00957-x.
|
[8] |
GAO F, SUN Y L, ZHANG G Z, et al. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions (Article)[J]. British Journal of Radiology, 2019, 92(1094): 20180204. DOI: 10.1259/bjr.20180204.
|
[9] |
邓琦, 潘爱珍, 徐志锋, 等. 基于AI技术CT直方图参数模型预测微小磨玻璃结节样肺腺癌浸润性[J]. 放射学实践, 2022, 37(8): 977-981. DOI: 10.13609/j.cnki.1000G0313.2022.08.010.
DENG Q, PAN A Z, XU Z F, et al. The predictive value of CT histogram parameter model based on artificial intelligence technology for the invasiveness of microscopic ground-glass nodular lung adenocarcinoma[J]. Radiologic Practice, 2022, 37(8): 977-981. DOI: 10.13609/j.cnki.1000G0313.2022.08.010.
|
[10] |
GAO R J, GAO Y H, ZHANG J, et al. A nomogram for predicting invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodules: Incorporating subjective CT signs and histogram parameters based on artificial intelligence[J]. Journal of cancer research and clinical oncology, 2023, 149(17): 15323-15333. DOI: 10.1007/s00432-023-05262-4.
|
[11] |
尹柯, 周容玉, 伍建林. 基于HRCT诊断模型鉴别纯磨玻璃结节样肺腺癌浸润程度研究进展[J]. CT理论与应用研究, 2020, 29(5): 621-629. DOI: 10.15953/j.1004-4140.2020.29.05.14.
YIN K, ZHOU R Y, WU J L. The research progress of HRCT-based diagnostic models for differentiating infiltration degree of pure ground glass nodular lung adenocarcinoma[J]. CT Theory and Applications, 2020, 29(5): 621-629. DOI: 10.15953/j.1004-4140.2020.29.05.14.
|
[12] |
MA X B, XU Q L, LI N, et al. A decision tree model to distinguish between benign and malignant pulmonary nodules on CT scans[J]. European review for medical and pharmacological sciences, 2023, 27(12): 5692-5699. DOI: 10.26355/eurrev_202306_32809.
|
[13] |
高琳, 张晶, 顾慧, 等. CT特征预测基于2021年肺肿瘤新分类肺纯磨玻璃结节浸润性及浸润程度的价值[J]. 中华放射学杂志, 2022, 56(6): 616-622. DOI: 10.3760/cma.j.cn112149-20210707-00641.
GAO L, ZHANG J, GU H. The value of CT features in predicting the invasion and invasive degree of lung pure ground-glass nodules based on the new classification of lung tumor in 2021[J]. Chinese Journal of Radiology, 2022, 56(6): 616-622. DOI: 10.3760/cma.j.cn112149-20210707-00641.
|
[14] |
李祖坤, 郭静清, 陈国宁, 等. CT特征在鉴别原位癌和微浸润腺癌中的价值[J]. 临床肺科杂志, 2024, 29(2): 231-235. DOI: 10.3969/j.issn.1009-6663.2024.02.014.
LI Z K, GUO J Q, CHEN G N, Value of CT features in distinguishing between carcinoma in situ and minimally invasive adenocarcinoma[J]. Journal of Clinical Pulmonary Medicine, 2024, 29(2): 231-235. DOI:10.3969/j.issn.1009-6663.2024.02.014. (in Chinese).
|
[15] |
魏子洋, 周清清, 邢滔, 等. 薄层电子计算机断层扫描+纹理技术联合微RNA-25对纯磨玻璃结节浸润性的诊断价值[J]. 安徽医药, 2024, 28(2): 326-330. DOI: 10.3969/j.issn.1009-6469.2024.02.025.
WEI Z Y, ZHOU Q Q, XING T, et al. Guidance value of thin-layer CT+texture technique combined with miR-25 to evaluate infiltrative pure ground glass nodules[J]. Anhui Medical and Pharmaceutical Journal, 2024, 28(2): 326-330. DOI: 10.3969/j.issn.1009-6469.2024.02.025.
|
[16] |
HE S Y, CHEN C E, WANG Z G, et al. The use of the mean computed tomography value to predict the invasiveness of ground-glass nodules: A meta-analysis[J]. Asian Journal of Surgery, 2023, 46(2): 677-682. DOI: 10.1016/j.asjsur.2022.07.031.
|
[17] |
石逸秋, 沈雨雯, 陈劼, 等. CT定量参数预测肺磨玻璃结节病理类型的价值[J]. 中国肺癌杂志, 2024, 27(2): 118-125. DOI: 10.3779/j.issn.1009-3419.2024.102.09.
SHI Y Q, SHEN Y W, CHEN J, et al. Value of CT quantitative parameters in prediction of pathological types of lung ground glass nodules[J]. Chinese Journal of Lung Cancer, 2024, 27(2): 118-125. DOI: 10.3779/j.issn.1009-3419.2024.102.09.
|
[18] |
闵旭红, 王召华, 马冬春, 等. 基于人工智能诊断术前预测肺磨玻璃结节浸润程度的应用价值[J]. 实用放射学杂志, 2022, 38(8): 1242-1246. DOI: 10.3969/j.issn.1002-1671.2022.08.006.
MIN X H, WANG Z H, MA D C, et al. Application value of artificial intelligence diagnostics in predicting the infiltration degree of lung ground glass nodules preoperatively[J]. Journal of Practical Radiology, 2022, 38(8): 1242-1246. DOI: 10.3969/j.issn.1002-1671.2022.08.006.
|
[19] |
邱慎满, 孟闫凯, 赵恒亮, 等. 基于CT形态及定量学特征构建多原发肺腺癌、腺体前驱病变风险分层模型[J]. 临床放射学杂志, 2022, 41(5): 860-865. DOI: 10.13437/j.cnki.jcr.2022.05.001.
QIU S M, MENG Y K, ZHAO H L, et al. To constitution a risk stratification model of multiple primary lung adenocarcinoma and gland precursor lesions based on CT morphological and quantitative characteristics[J]. Journal of Clinical Radiology, 2022, 41(5): 860-865. DOI: 10.13437/j.cnki.jcr.2022.05.001.
|
[20] |
陈松, 李清楚, 陈如潭, 等. CT三维定量参数对纯磨玻璃结节中腺体前驱病变的预测价值[J]. 临床放射学杂志, 2023, 42(4): 575-580.
CHEN S, LI Q C, CHEN R T, et al. The predictive value of CT three-dimensional quantitative parameters for precursor glandular lesions in pure ground-glass nodules[J]. Journal of Clinical Radiology, 2023, 42(4): 575-580. (in Chinese).
|
[21] |
俞慧波, 陈中港, 李琼, 等. 月牙征预测纯磨玻璃结节肺腺癌浸润性的价值[J]. 中华放射学杂志, 2021, 55(4): 403-408. DOI: 10.3760/cma.j.cn112149-20200609-00791.
YU H B, CHEN Z G, LI Q, Crescent sign for predicting the invasiveness of lung adenocarcinoma with pure ground-glass opacity[J]. Chinese Journal of Radiology, 2021, 55(4): 403-408. DOI:10.3760/cma.j.cn112149-20200609-00791. (in Chinese).
|
[22] |
慎源洁, 肖新广, 张欣, 等. 直径<3cm纯磨玻璃结节肺腺癌组织病理学与CT定量值的关系[J]. 实用放射学杂志, 2023, 39(6): 908-911. DOI: 10.3969/j.issn.1002-1671.2023.06.010.
SHEN Y J, XIAO X G, ZHANG X, et al. The relationship between histopathology and CT quantitative value in pure ground glass nodule lung adenocarcinoma with diameter <3cm[J]. Journal of Practical Radiology, 2023, 39(6): 908-911. DOI: 10.3969/j.issn.1002-1671.2023.06.010.
|