Citation: | LI Y S, WANG W, LI B Y, et al. Application of Split-frequency AVO Technology in the Evaluation of Middle-depth Thin Reservoirs in the Xihu Depression[J]. CT Theory and Applications, 2025, 34(3): 409-418. DOI: 10.15953/j.ctta.2024.223. (in Chinese). |
Owing to the combination of factors such as the thin layer structure, thickness, and fluid, the wave field characteristics of the thin layer are relatively complex, which results in large uncertainties in the thin layer AVO analysis. To address the complex thin layer simulation problem, this study uses the reflectivity method to conduct AVO forward simulations of thin reservoirs, and finds that the AVO response of the thin layer has an obvious “V” feature at the far offset owing to the tuning effect. Comparing and analyzing the thin layer pre-stack gather in different frequency bands clearly shows that the seismic frequency band is wider and that the AVO amplitude curve of the pre-stack gather is more stable. Using high-resolution time-frequency analysis, the AVO stability can be further improved by performing the frequency scanning analysis on the pre-stacked gather of different frequency bands and selecting the advantageous information of the AVO information that changes stably in the seismic frequency bands to be reconstructed. Through the actual pre-stack gather verification analysis, the advantageous frequency band information of the pre-stack gather can effectively improve the reliability of hydrocarbon detection and provide powerful technical support for the detection of hydrocarbons in the middle and deep layers of the Xihu Depression.
[1] |
赵云, 文晓涛, 尹川, 韩文明, 李陈龙. 叠前重加权L1范数稀疏约束的地震反演方法[J]. 石油地球物理勘探, 2023, 58(6): 1398-1409. DOI: 10.13810/j.cnki.issn.1000-7210.2023.06.012.
ZHAO Yun, WEN Xiaotao, YIN Chuan, HAN Wenming, LI Chenlong. Prestack seismic inversion with reweighted L1-norm sparse constraints[J]. Oil Geophysical Prospecting, 2023, 58(6): 1398-1409. DOI: 10.13810/j.cnki.issn.1000-7210.2023.06.012.
|
[2] |
王延光, 李皓, 李国发, 刘立彬, 曹国明, 张会卿. 一种用于薄层和薄互层砂体厚度估算的复合地震属性[J]. 石油地球物理勘探, 2020, 55(1): 153-160. DOI: 10.13810/j.cnki.issn.1000-7210.2020.01.018.
WANG Yanguang, LI Hao, LI Guofa, LIU Libin,CAO Guoming, ZHANG Huiqing. A composite seismic attribute used to estimate the sand thickness for thin bed and thin interbed[J]. Oil Geophysical Prospecting, 2020, 55(1): 153-160. DOI: 10.13810/j.cnki.issn.1000-7210.2020.01.018.
|
[3] |
党腾雲, 徐天吉, 钱忠平, 邹振, 张红英. 基于匹配追踪与核主成分分析的地震信号高分辨率处理方法[J]. 石油地球物理勘探, 2024, 59(4): 782-789. DOI: 10.13810/j.cnki.issn.1000-7210.2024.04.015.
DANG Tengyun, XU Tianji, QIAN Zhongping, ZOU Zhen, ZHANG Hongying. High-resolution seismic signal processing method based on matching pursuit and kernel principal component analysis[J]. Oil Geophysical Prospecting, 2024, 59(4): 782-789. DOI: 10.13810/j.cnki.issn.1000-7210.2024.04.015.
|
[4] |
KALLWEITT R S, WOOD L C. The limits of resolution of zero-phase wavelets[J]. Geophysics, 1982, 47(7): 1035-1046. DOI: 10.1190/1.1441367.
|
[5] |
孙鲁平, 郑晓东, 首皓, 等. 薄层地震峰值频率与厚度关系研究[J]. 石油地球物理勘探, 2010, 45(2): 258-259.
SUN L P, ZHENG X D, SHOU H, et al. The studies on relationship between thin layer seismic peak frequency and its thickness[J]. Oil Geophysical Prospecting, 2010, 45(2): 258-259. (in Chinese).
|
[6] |
李国发, 岳英, 国春香, 等. 基于模型的薄互层地震属性分析及其应用[J]. 石油物探, 2011, 50(2): 144-149.
LI G F, YUE Y, GUO C X, et al. Seismic attributes analysis based on model in thin interbedded layers and its application. Geophysical Prospecting for Petroleum. 2011, 50(2): 144-149. (in Chinese).
|
[7] |
李键, 尹文笋, 李琴, 等. 基于鬼波衰减与非平稳多阶差分地震拓频技术的研究与应用[J]. CT理论与应用研究, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013.
LI J, YIN W S, LI Q, et al. Research and application of seismic frequency extension technology based on ghost wave attenuation and non-stationary multi-order differential algorithm[J]. CT Theory and Applications, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013. (in Chinese).
|
[8] |
WIDESS M B. How thin is a thin bed?[J]. Geophysics, 1973, 38(6): 1176-1180. DOI: 10.1190/1.1440403.
|
[9] |
SIMMONS J L, BACKUS M M. Amplitude-versus-offset modeling and the locally converted shear wave[C]// SEG Technical Program Expanded Abstracts, 1993, 738-741.
|
[10] |
LIU Y B, SCHMITT D R. Quantitative analysis of thin layer effects: Transmission coefficients and seismograms[C]// SEG Technical Program Expanded Abstracts, 2000, 2464-2467.
|
[11] |
PAN W Y, INNANEN K A. AVO/AVF analysis of thin-bed in elastic media[C]// SEG Houston 2013 Annual Meeting, 2013.
|
[12] |
赵伟, 陈小宏, 李景叶. 薄互层调谐效应对AVO的影响[J]. 石油物探, 2006, (6): 570-573.
ZHAO W, CHEN X H, LI J Y. Analysis of impact of thin interbed tuning effect on AVO. Geophysical Prospecting for Petroleum, 2006, 45(6): 570-573. (in Chinese).
|
[13] |
周丽, 顾汉明, 马灵伟, 等. 基于波动方程正演模拟分析薄砂层含不同流体的AVO特征[J]. 地质科技情报, 2013, 32(2): 169-173.
ZHOU L, GU H M, MA L W, et al. Analysis of AVO characterisitics on thin sand reservoir with various fluid based seismic modeling[J]. Geological Science and Technology Information, 2013, 32(2): 169-173. (in Chinese).
|
[14] |
陈珊, 陆蓉, 刘力辉, 等. 薄互层干涉对叠前AVO属性的影响分析[J]. 地学前缘, 2020, 27(4): 98-109.
LU S, LU R, LIU L H, et al. Analysis of the influence of thin interbed interference on prestack AVO attributes[J]. Earth Science Frontiers, 2020, 27(4): 98-109. (in Chinese).
|
[15] |
常锁亮, 张生, 刘晶, 等. 薄互层条件下围岩变化对煤层反射波的影响研究[J]. 煤田地质与勘探, 2021, 49(5): 220-229. DOI: 10.3969/j.issn.1001-1986.2021.05.024.
CHANG S L, ZHANG S, LIU J, et al. Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition[J]. Coal Geology & Exploration, 2021, 49(5): 220-229. DOI: 10.3969/j.issn.1001-1986.2021.05.024. (in Chinese).
|
[16] |
郭智奇, 刘财, 冯晅, 等. 薄储层的反射特征及其AVO属性分析[J]. 石油物探, 2009, 48(5): 453-458. DOI: 10.3969/j.issn.1000-1441.2009.05.004.
GUO Z Q, LIU C, FENG Y, et al. Reflection characteristics of thin reservoirs and its AVO attributes analysis[J]. Geophysical Prospecting for Petroleum, 2009, 48(5): 453-458. DOI: 10.3969/j.issn.1000-1441.2009.05.004. (in Chinese).
|
[17] |
王云专, 郭雪豹, 邢小林, 等. 薄层峰值频率特征分析[J]. 地球物理学进展, 2013, 28(5): 2515-2523. DOI: 10.6038/pg20130530.
WANG Y Z, GUO X B, XING X L, et al. Analysis of peak frequency characteristics of thin bed[J]. Progress in Geophysics, 2013, 28(5): 2515-2523. DOI: 10.6038/pg20130530. (in Chinese).
|
[18] |
陈小宏, 田立新, 黄饶. 地震分频AVO方法研究现状与展望[J]. 海相油气地质, 2009, 14(4): 60-66. DOI: 10.3969/j.issn.1672-9854.2009.04.009.
CHEN X H, TIAN L X, HUANG R. Research progressing on frequency dependent AVO analysis[J]. Marine Origin Petroleum Geology, 2009, 14(4): 60-66. DOI: 10.3969/j.issn.1672-9854.2009.04.009. (in Chinese).
|
[19] |
BREKHOVSKIKH L, GONCHAROV V, ROBERTSON J S. Mechanics of continua and wave dynamics[J]. The Journal of the Acoustical Society of America, 1987, 82(1): 400.
|
[20] |
王建花. 叠前弹性参数反演新方法[D]. 青岛: 中国海洋大学, 2006.
WANG J H. A new method on prestack elastic parameters inversion[D]. Qingdao: Ocean University of China, 2006. (in Chinese).
|
[21] |
刘仕友, 陈志宏, 汪锐, 等. 琼东南盆地深水区亮点型气藏时频差异属性分析应用研究[J]. 地球科学, 2023, 48(2): 465-474.
LIU S Y, CHEN Z H, WANG R, et al. Application of time-frequency difference attribute analysis of bright spot type gas reservoir in deepwater qiongdongnan basin[J]. Earth Science, 2023, 48(2): 465-474. (in Chinese).
|
[22] |
胡伟, 秦德文, 李琴, 等. 双宽地震资料在东海X气田河道砂体预测中的应用[J]. CT理论与应用研究, 2022, 31(3): 293-304. DOI: 10.15953/j.ctta.2021.017.
HU W, QIN D W, LI Q, et al. Application of double width seismic data to channel sand body prediction of X gas field in the East China Sea[J]. CT Theory and Applications, 2022, 31(3): 293-304. DOI: 10.15953/j.ctta.2021.017. (in Chinese).
|