ISSN 1004-4140
CN 11-3017/P
ZHAO H X, ZHAO X J, CHEN P, et al. CT Scatter Correction Based on Beam-hole Array and ADMM Algorithm[J]. CT Theory and Applications, 2025, 34(2): 225-234. DOI: 10.15953/j.ctta.2024.236. (in Chinese).
Citation: ZHAO H X, ZHAO X J, CHEN P, et al. CT Scatter Correction Based on Beam-hole Array and ADMM Algorithm[J]. CT Theory and Applications, 2025, 34(2): 225-234. DOI: 10.15953/j.ctta.2024.236. (in Chinese).

CT Scatter Correction Based on Beam-hole Array and ADMM Algorithm

More Information
  • Received Date: October 28, 2024
  • Revised Date: November 20, 2024
  • Accepted Date: November 20, 2024
  • Available Online: December 01, 2024
  • In cone-beam computed tomography (CT) systems, scatter signals can result in artifacts in images, thus adversely affecting image quality by reducing the contrast and signal-to-noise ratio. To accurately estimate and suppress scatter artifacts, a new scatter-correction method for cone-beam CT based on a beam-hole array (BHA) scatter-correction plate and the alternating direction method of multipliers (ADMM) are proposed. Based on the correction principle of the BHA scatter-correction plate, the plate is placed between the object under test and the detector during scanning. This setup captures projection data and computes scatter signals at the centers of the beam holes. Simultaneously, by incorporating the theory of compressed sensing, an L1-norm constrained model is established, and the ADMM is utilized to obtain a complete scatter-field distribution. Using an interpolation algorithm to scan angles reduces the time required for a full-angle reconstruction of the scatter field. Post-scatter removal and reconstruction yield scatter-corrected CT images. Data analysis of the reconstructed slices reveals the image quality, which indicates that the scatter-correction method based on the BHA plate effectively enhances the image contrast and reduces scatter artifacts. The improved scatter-signal reconstruction method further increases the accuracy of scatter-signal estimation, thus rendering scatter suppression more pronounced. Furthermore, using scanning-angle interpolation algorithms improves the efficiency of scatter-field reconstruction. The combined use of BHA and ADMM provides better scatter removal and further improvement in image quality.

  • [1]
    HUANG K D, ZHANG H, SHI Y K, et al. Scatter correction method for cone-beam CT based on interlacing-slit scan[J]. Chinese Physics B, 2014, 23(9): 098106. DOI: 10.1088/1674-1056/23/9/098106.
    [2]
    刘建邦, 席晓琦, 韩玉, 等. 基于KN 模型的锥束 CT 散射伪影校正方法[J]. Acta Optica Sinica, 2018, 38(11): 1134001. DOI: 10.3788/AOS201838.1134001.

    LIU J B, XI X Q, HAN Y, et al. A new scattering artifact correction method based on K-N formula for cone-beam computed tomography[J]. Acta Optica Sinica, 2018, 38(11): 1134001. DOI: 10.3788/AOS201838.1134001. (in Chinese).
    [3]
    戎军艳, 刘文磊, 高鹏, 等. 锥束CT散射抑制方法综述[J]. CT理论与应用研究, 2016, 25(2): 235-250. DOI: 10.15953/j.1004-4140.2016.25.02.15.

    RONG J Y, LIU W L, GAO P. The review of scatter suppression methods in cone beam CT[J]. CT Theory and Applications, 2016, 25(2): 235-350. DOI:10.15953/j.1004-4140.2016.25.02.15. (in Chinese).
    [4]
    唐天旭, 段晓礁, 周志政, 等. 基于散射校正板的锥束微纳CT系统的散射校正[J]. 光学学报, 2019, 39(8): 0834001. DOI: 10.3788/AOS201939.0834001.

    TANG T, DUAN X, ZHOU Z, et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 2019, 39(8): 0834001. DOI: 10.3788/AOS201939.0834001. (in Chinese).
    [5]
    TSUJI Y, ARAKI K, ENDO A, et al. Scatter radiation and the effects of air gaps in cephalometric radiography[J]. Oral radiology, 2006, 22: 7-13. DOI: 10.1007/s11282-006-0038-7.
    [6]
    LIU W, RONG J, GAO P, et al. Algorithm for X-ray beam hardening and scatter correction in low-dose cone-beam CT: Phantom studies[C]//Medical Imaging 2016: Physics of Medical Imaging. SPIE, 2016, 9783: 785-792.
    [7]
    KWAN A L C, BOONE J M, SHAH N. Evaluation of X-ray scatter properties in a dedicated cone-beam breast CT scanner[J]. Medical Physics, 2005, 32(9): 2967-2975. DOI: 10.1118/1.1954908.
    [8]
    SCHORNER K, GOLDAMMER M, STIERSTORFER K, et al. Scatter correction method by temporal primary modulation in X-ray CT[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 3278-3285. DOI: 10.1109/TNS.2012.2218127.
    [9]
    SISNIEGA A, ZBIJEWSKI W, XU J, et al. High-fidelity artifact correction for cone-beam CT imaging of the brain[J]. Physics in Medicine & Biology, 2015, 60(4): 1415.
    [10]
    ISKENDER B, BRESLER Y. Scatter correction in X-ray CT by physics-inspired deep learning[J]. IEEE Transactions on Computational Imaging, 2022, 8: 1074-1088. DOI: 10.1109/TCI.2022.3226300.
    [11]
    阳振宇, 吕杨, 赵俊. 基于蒙特卡罗法的三源锥束CT散射分析[J]. CT理论与应用研究, 2012, 21(1): 1-9.

    YANG Z Y, LV Y, ZHAO J. Analysis of scattering in triple-source cone-beam CT based on Monte Carlo method[J]. CT Theory and Applications, 2012, 21(1): 1-9. (in Chinese).
    [12]
    CAI W, NING R, CONOVER D. Scatter correction using beam stop array algorithm for cone-beam CT breast imaging[C]//Medical Imaging 2006: Physics of Medical Imaging. SPIE, 2006, 6142: 1157-1165.
    [13]
    SCHÖRNER K, GOLDAMMER M, STEPHAN J. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(3): 292-299. DOI: 10.1016/j.nimb.2010.11.053.
    [14]
    ALTUNBAS C, KAVANAGH B, ALEXEEV T, et al. Transmission characteristics of a two dimensional antiscatter grid prototype for CBCT[J]. Medical Physics, 2017, 44(8): 3952-3964. DOI: 10.1002/mp.12346.
    [15]
    郭成龙, 倪培君, 齐子诚, 等. 基于斜孔散射校正板的锥束X射线CT散射校正方法[J]. 强激光与粒子束, 2024, 36(7): 074004-1-074004-9.

    GUO C L, NI P J, QI Z C, et al. Scattering correction method for cone-beam X-ray CT based on slanted-hole scattering correction plate[J]. High Power Lasep and Particle Beams, 2024, 36(7): 074004-1-074004-9. (in Chinese).
    [16]
    杨富强, 张定华, 黄魁东, 等. CT不完全投影数据重建算法综述[J]. 物理学报, 2014, 63(5): 058701.

    YANG F Q, ZHANG D H, HUANG K D, et al. Review of reconstruction algorithms with incomplete projection data of computed tomography[J]. Acta Physica Sinica, 2014, 63(5): 058701. (in Chinese).
    [17]
    张家浩, 乔志伟. 基于相对TV最小的CT图像重建方法[J]. CT理论与应用研究, 2023, 32(2): 153-169. DOI: 10.15953/j.ctta.2022.190.

    ZHANG J H, QIAO Z W. Computed tomography reconstruction algorithm based on relative total variation minimization[J]. CT Theory and Applications, 2023, 32(2): 153-169. DOI: 10.15953/j.ctta.2022.190. (in Chinese).
    [18]
    YANG F, ZHANG D, HUANG K, et al. Scattering estimation for cone-beam CT using local measurement based on compressed sensing[J]. IEEE Transactions on Nuclear Science, 2018, 65(3): 941-949. DOI: 10.1109/TNS.2018.2803739.
    [19]
    WAHLBERG B, BOYD S, ANNERGREN M, et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 2012, 45(16): 83-88. DOI: 10.3182/20120711-3-BE-2027.00310.
    [20]
    宋洁. 基于ADMM的低剂量CT重建算法的研究[D]. 太原: 中北大学, 2019.
    [21]
    ZHU L, BENNETT N R, FAHRIG R. Scatter correction method for X-ray CT using primary modulation: Theory and preliminary results[J]. IEEE Transactions on Medical Imaging, 2006, 25(12): 1573-1587. DOI: 10.1109/TMI.2006.884636.

Catalog

    Article views (217) PDF downloads (67) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return