ISSN 1004-4140
CN 11-3017/P
XIA X R, JIANG G M, ZHAO D P. Crustal Velocity Structure of the Middle-Southern Segment of the Tanlu Fault Zone (China) and its Correlation with the Seismic Activity in the Region[J]. CT Theory and Applications, 2025, 34(2): 163-174. DOI: 10.15953/j.ctta.2024.257. (in Chinese).
Citation: XIA X R, JIANG G M, ZHAO D P. Crustal Velocity Structure of the Middle-Southern Segment of the Tanlu Fault Zone (China) and its Correlation with the Seismic Activity in the Region[J]. CT Theory and Applications, 2025, 34(2): 163-174. DOI: 10.15953/j.ctta.2024.257. (in Chinese).

Crustal Velocity Structure of the Middle-Southern Segment of the Tanlu Fault Zone (China) and its Correlation with the Seismic Activity in the Region

More Information
  • Received Date: November 17, 2024
  • Revised Date: December 11, 2024
  • Accepted Date: December 14, 2024
  • Available Online: December 25, 2024
  • The Tanlu fault zone is the largest and most active Quaternary fault in eastern China. An M8.5 earthquake occurred in 1668 in Tancheng City located on the southern segment of the Tanlu fault. In this study, we analyzed the crustal velocity structure of the Tanlu fault zone and assessed its relationship with the regional seismic activity, using a large dataset of the arrival times of the primary (P) and secondary (S) waves recorded at 121 permanent seismic stations in and around the middle-southern segments of the Tanlu fault; in total, we used the data of 8528 local earthquakes. We developed three-dimensional (3D) images of the P-wave (VP) and S-wave (VS) velocities and the VP / VS ratio, using the TOMOG3D (a seismic tomography method). The tomography results revealed the following features: (1) a significant velocity segmentation feature exists in the middle-southern segments of the Tanlu fault zone; this feature can be divided into Section A (located in the north of Tancheng), Section B (extending from Tancheng to Mingguang), and Section C (extending from Mingguang to Wuxue). (2) Large earthquakes are mainly distributed at the junction of the high- and low-velocity anomalies. (3) A strong correlation was noted between the velocity structure and seismic activity, especially in Suqian (where a clear low-velocity anomaly that corresponded to a seismic gap was observed). Our study provides new insights into the crustal heterogeneity and seismic activity in the middle-southern segments of the Tanlu fault zone.

  • [1]
    冀国强. 郯庐断裂带地壳上地幔速度与各向异性结构研究[D]. 北京: 中国地震局地质研究所, 2024.
    [2]
    李家灵, 晁洪太, 崔昭文, 等. 郯庐活断层的分段及其大震危险性分析[J]. 地震地质, 1994, 16(2): 121-126.

    LI J L, CHAO H T, CUI Z W, et al. Segmentation of active fault along the Tancheng-Lujiang fault zone and evaluation of strong earthquake risk[J]. Seismology and Geology, 1994, 16(2): 121-126. (in Chinese).
    [3]
    施炜, 张岳桥, 董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报, 2003, 24(1): 1118.
    [4]
    朱艾斓, 徐锡伟, 王鹏, 等. 以精定位背景地震活动与震源机制解研究郯庐断裂带中南段现今活动习性[J]. 地学前缘, 2018, 25(1): 218-226.

    ZHU A L, XU X W, WANG P, et al. The present activity of the central and southern segments of the Tancheng-Lujiang fault zone evidenced from relocated microseismicity and focal mechanisms[J]. Earth Science Frontiers, 2018, 25(1): 218-226. (in Chinese).
    [5]
    孟亚锋, 姚华建, 王行舟, 等. 2019. 基于背景噪声成像方法研究郯庐断裂带中南段及邻区地壳速度结构与变形特征[J]. 地球物理学报, 62(7): 2490-2509.

    MENG Y F, YAO H J, WANG X Z, et al. Crustal velocity structure and deformation features in the Central-Southern segment of Tanlu fault zone and its adjacent area from ambient noise tomography[J]. Chinese Journal of Geophysics, 2019, 62(7): 2490-2509. (in Chinese).
    [6]
    WEI Z G, CHU R S, CHEN L, et al. Crustal structure in the Middle-Southern segments of the Tanlu Fault Zone and adjacent regions constrained by multifrequency receiver function and surface wave data[J]. Physics of the Earth and Planetary Interiors, 2020, 301: 106470. DOI: 10.1016/j.pepi.2020.106470.
    [7]
    LV Z Q, LEI J S. Seismic evidence for crustal modification across the Tanlu fault zone in eastern China[J]. Geophysical Research Letters, 2022, 49: e2022GL099761. DOI: 10.1029/2022GL099761.
    [8]
    江国明, 张贵宾, 吕庆田, 等. 长江中下游地区成矿深部动力学机制: 远震层析成像证据[J]. 岩石学报, 2014, 30(4): 907-917.

    JIANG G M, ZHANG G B, LV Q T, et al. Deep geodynamics of mineralization beneath the Middle-Lower reaches of Yangtze River: Evidence from teleseismic tomography[J]. Acta Petrologica Sinica, 2014, 30(4): 907-917. (in Chinese).
    [9]
    LEI J S, ZHAO D P, XU X W, et al. P-wave upper-mantle tomography of the Tanlu fault zone in eastern China[J]. Physics of the Earth and Planetary Interiors, 2020, 299: 106402. DOI: 10.1016/j.pepi.2019.106402.
    [10]
    ZHAO D P, LEI J, TANG Y. Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography[J]. Chinese Science Bulletin, 2004, 49: 1401-1408. DOI: 10.1360/04wd0125.
    [11]
    ZHAO D P, MARUYAMA S, OMORI S. Mantle dynamics of Western Pacific and East Asia: Insight from seismic tomography and mineral physics[J]. Gondwana Research, 2007, 11(1/2): 120-131.
    [12]
    LEI J S. Upper-mantle tomography and dynamics beneath the North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06313.
    [13]
    ZHAO D P, HASEGAWA A, HORIUCHI S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research, 1992, 97: 19909-19928. DOI: 10.1029/92JB00603.
    [14]
    和锐, 杨建思, 张翼. 地震层析成像方法综述[J]. CT理论与应用研究, 2007, 16(1): 35-48.

    HE R, YANG J S, ZHANG Y. A review on the technology of seismic tomography[J]. CT Theory and Applications, 2007, 16(1): 35-48. (in Chinese).
    [15]
    冯梅, 安美建. 基于面波频散的三维横波速度方位各向异性层析成像方法[J]. CT理论与应用研究, 2020, 29(4): 381-397. DOI: 10.15953/j.1004-4140.2020.29.04.01.

    FENG M, AN M J. Method on 3D tomography of S-wave velocity azimuthal anisotropy by using surface-wave dispersion curves[J]. CT Theory and Applications, 2020, 29(4): 381-397. DOI: 10.15953/j.1004-4140.2020.29.04.01. (in Chinese).
    [16]
    刘晏廷, 钟成城, 江国明, 等. 西北太平洋板块边缘俯冲特征: 来自堪察加壳幔速度成像的约束[J]. CT理论与应用研究, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223.

    LIU Y T, ZHONG C C, JIANG G M, et al. Subduction dynamics at the northwestern pacific slab edge: Constraints of tomography in Kamchatka[J]. CT Theory and Applications, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223. (in Chinese).
    [17]
    WANG J, ZHAO D P. P-wave anisotropic tomography beneath Northeast Japan[J]. Physics of the Earth and Planetary Interiors, 2008, 170(1/2): 115-133.
    [18]
    黄耘, 李清河, 张元生, 等. 郯庐断裂带鲁苏皖段及邻区地壳速度结构[J]. 地球物理报, 2011, 54(10): 2549-2559. DOI: 10.3969/j.issn.0001-5733.2011.10.012.

    HUANG Y, LI Q H, ZHANG Y S, et al. Crustal velocity structure beneath the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang fault zone and adjacent areas[J]. Chinese Journal of Geophysics, 2011, 54(10): 2549-2559. DOI: 10.3969/j.issn.0001-5733.2011.10.012. (in Chinese).
    [19]
    何奕成, 范小平, 赵启光, 等. 郯庐断裂带中南段地壳结构分段特征[J]. 地球物理学报, 2021, 64(9): 3164-3178. DOI: 10.6038/cjg2021O0247.

    HE Y C, FAN X P, ZHAO Q G, et al. 2021. Segmentation of crustal structure beneath the middle-south segment of Tan-Lu Fault Zone[J]. Chinese Journal of Geophysics, 64(9): 3164-3178. DOI:10.6038/cjg2021O0247. (in Chinese).
    [20]
    顾勤平, 李大虎, 丁志峰, 等. 利用接收函数研究郯庐断裂带鲁苏皖段及邻区地壳结构特征[J]. 地球物理学报, 2022, 65(9): 3280-3296. DOI: 10.6038/cjg2022P0926.

    GU Q P, LI D H, DING Z F, et al. 2022. Crustal structure characteristics beneath the Shandong-Jiangsu-Anhui segment of the Tan-Lu fault zone and its adjacent regions using receiver functions[J]. Chinese Journal of Geophysics, 65(9): 3280-3296. DOI: 10.6038/cjg2022P0926. (in Chinese).
    [21]
    崔腾发, 陈小斌, 詹艳, 等. 安徽霍山地震区深部电性结构和发震构造特征[J]. 地球物理学报, 2020, 63(1): 256-269. DOI: 10.6038/cjg2019M0458.

    CUI T F, CHEN X B, ZHAN Y, et al. 2020. Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area[J]. Chinese Journal of Geophysics, 63(1): 256-269. DOI:10.6038/cjg2019M0458. (in Chinese).
    [22]
    徐纪人, 杨文采, 赵志新, 等. 苏鲁大别造山带岩石圈三维P波速度结构特征[J]. 地质学报, 2003, 77(4): 577-582.

    XU J R, YANG W C, ZHAO Z X, et al. Three-dimensional velocity structures of the Sulu-Dabie orogen belt[J]. Acta Geologica Sinica, 2003, 77(4): 577-582. (in Chinese).
    [23]
    CUI X, SONG X Q, XU L S, et al. Three-dimensional crustal P-wave structure beneath the central south segment of the Tanlu Fault Zone determined by local earthquake travel-time tomography[J]. Terra Nova, 2021, 33(6): 613-620. DOI: 10.1111/ter.12553.
    [24]
    LUO S, YAO H J, LI Q S, et al. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences, 2019, 62(9): 1361-1378. DOI: 10.1007/s11430-018-9352-9.
    [25]
    洪德全, 王行舟, 李军辉, 等. 利用远震接收函数研究安徽地区地壳厚度[J]. 地震地质, 2013, 35(4): 853-863. DOI: 10.3969/j.issn.0253-4967.2013.04.014.

    HONG D Q, WANG X Z, LI J H, et al. Study on the crustal thickness beneath stations of seismic network in Anhui province by teleseismic receiver function[J]. Seismology and Geology, 2013, 35(4): 853-863. DOI: 10.3969/j.issn.0253-4967.2013.04.014. (in Chinese).
    [26]
    刘亮, 邱检生, 李真. 浙江沐尘石英二长岩及其镁铁质包体的锆石U-Pb年龄和Hf同位素组成——对岩浆混合作用的示踪[J]. 地质论评, 2011, 57(3): 327-336. DOI: 10.16509/j.georeview.2011.03.009.

    QIU J L, HU J S, LI Z. Zircon U-Pb age and Hf isotopic compositions of quartz monzonite and enclosed mafic enclaves in muchen pluton, Zhejiang province: Tracing magma mixing in their petrogenesis[J]. Geological Review, 57(3): 327-336. (in Chinese).
    [27]
    贾科, 周仕勇. 断层相互作用与地震触发机制研究回顾与展望[J]. 地球与行星物理论评(中英文), 2023. 54(5): 477-497. DOI: 10.19975/j.dqyxx.2022-071.

    JIA K, ZHOU S Y. Fault interaction and earthquake triggering mechanisms: Progress and prospects[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(5): 477-497. DOI:10.19975/j.dqyxx.2022-071. (in Chinese).
    [28]
    HUANG J L, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B9): B09305.

Catalog

    Article views (393) PDF downloads (125) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return