ISSN 1004-4140
CN 11-3017/P
Peng L, Ma Z, Niu Y, et al. The Effect of X-ray Energy on Dosimeter Measurements of CT Radiation Dose[J]. CT Theory and Applications, xxxx, x(x): 1-6. DOI: 10.15953/j.ctta.2024.315. (in Chinese).
Citation: Peng L, Ma Z, Niu Y, et al. The Effect of X-ray Energy on Dosimeter Measurements of CT Radiation Dose[J]. CT Theory and Applications, xxxx, x(x): 1-6. DOI: 10.15953/j.ctta.2024.315. (in Chinese).

The Effect of X-ray Energy on Dosimeter Measurements of CT Radiation Dose

More Information
  • Received Date: December 22, 2024
  • Revised Date: January 18, 2025
  • Accepted Date: January 23, 2025
  • Available Online: March 05, 2025
  • Objective: The point dose and volume CT dosimetry index (CTDIvol) at different X-ray energies were measured using the Raysafe-X2 air ionization chamber (referred to as “RX2”), the Piranha CT dose profiler semiconductor ionization chamber (referred to as “CDP”), and the 30013 Farmer air ionization chamber (referred to as “PT3”), in order to explore the effect of X-ray energy on the radiation dose evaluation by different dose meters. Methods : The tube voltage settings for each layer were as follows: single energy mode included 80 kV, 90 kV, 100 kV, 120 kV, 140 kV, and 150 kV (Sn); dual energy mode included 70/150 kV (Sn), 80/150 kV (Sn), 90/150 kV (Sn), 100/150 kV (Sn), and 80/140 kV. The tube current was manually adjusted to ensure that the CTDIvol for each group was approximately 20 mGy, and the displayed CTDIvol and DLP were recorded. Point dose values were measured at the center, 0-point, 3-point, 6-point, and 9-point positions of the 32 cm phantom using CDP and PT3. The actual CTDIvol was measured and calculated using RX2, CDP, and PT3. Results: (1) Point Dose:①in single energy mode (except for Sn150 kV), CDP measured higher point doses at the center compared to PT3. At low energies, the point dose measured by CDP at non-center positions was 75% higher than that of PT3, while at high energies, 88% of the point doses measured by PT3 were higher than those measured by CDP. ②In dual energy mode (except for 90+Sn150 kV), CDP measured higher point doses at the center compared to PT3. However, except for 80+140 kV, PT3 measured higher point doses than CDP at non-center positions. (2) As for CTDIvol, the measured values were as follows: RX2 measured (18.89 ± 0.38) mGy, CDP measured 18.31 (19.25, 20.84) mGy, and PT3 measured (20.35 ± 0.38) mGy. Except when CDP was used at 150 kV (Sn), the CTDIvol measured by all three dose meters for other X-ray energies ranged between 16 mGy and 24 mGy. Conclusion: Different dosimeters exhibit varying responses to X-ray energy. Therefore, selecting an appropriate dosimeter is crucial depending on the measurement conditions and objectives.

  • [1]
    SMITH B R, WANG Y, CHU P, et al. International variation in radiation dose for computed tomography examinations: prospective cohort study[J]. BioMed Central, 2019, 364 k4931. DOI: 10.1136/bmj.k4931.
    [2]
    MCALLISTER K, LORIMORE S, WRIGHT E, et al. In vivo interactions between ionizing radiation, inflammation and chemical carcinogens identified by increased DNA damage responses[J]. Radiation Research, 2012, 177(5): 584-593. DOI: 10.1667/rr2690.1.
    [3]
    POON R, BADAWY M K. Radiation dose and risk to the lens of the eye during CT examinations of the brain[J]. Journal of Medical Imaging and Radiation Oncology, 2019, 63(6): 786-794. DOI: 10.1111/1754-9485.12950.
    [4]
    BOSCH M, THIERRY I, HARBRON R, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults[J]. Nature Medicine, 2023, 29(12): 3111-3119. DOI: 10.1038/s41591-023-02620-0.
    [5]
    HAUPTMANN M, DANIELS RD, CARDIS E, et al. Epidemiological Studies of Low-Dose Ionizing Radiation and Cancer: Summary Bias Assessment and Meta-Analysis[J]. J Natl Cancer Inst Monogr, 2020(56): 188-200. DOI: 10.1093/jncimonographs/lgac027.
    [6]
    王楚胭, 卓维海, 林鑫, 等. CT所致受检者个体化器官剂量的研究进展[J]. 中国辐射卫生, 2022, 31(6): 756-762. DOI: 10.13491/j.issn.1004-714X.2022.06.021.

    WANG C Y, ZHUO W H, LIN X, et al. Research progress on individualized organ doses for patients caused by CT[J]. Chinese Journal of Radiation Health, 2022, 31(6): 756-762. DOI: 10.13491/j.issn.1004-714X.2022.06.021.
    [7]
    欧向明, 范瑶华. 新型诊断剂量仪的能量响应特性研究[J]. 中国医学装备, 2018, 15(7): 58-60. DOI: 10.3969/J.ISSN.1672-8270.2018.07.013.

    OU X M, FAN Y H. Energy response characteristics of a new diagnostic dose meter[J]. China Medical Equipment, 2018, 15(7): 58-60. DOI: 10.3969/J.ISSN.1672-8270.2018.07.013.
    [8]
    卫生健康委员会. X 射线计算机体层摄影装置质量控制检测规范: WS/T 519-2019[S]. 2019.
    [9]
    郭洪涛, 刘勇, 袁淑华. CT剂量指数(CTDI)测量研究[J]. 中国测试技术, 2007, 33(4): 33-36,108. DOI: 10.3969/j.issn.1674-5124.2007.04.009.

    GUO H T, LIU Y, YUAN S H. Research on CT dose index (CTDI) measurement[J]. China Testing Technology, 2007, 33(4): 33-36,108. DOI: 10.3969/j.issn.1674-5124.2007.04.009.
    [10]
    杨志国. 检定螺旋CT剂量指数(CTDI)应注意的问题[J]. 中国计量, 2015(2): 115-116.

    YANG Z G. Issues to be Noted in the Calibration of Spiral CT Dose Index (CTDI)[J]. China Metrology, 2015(2): 115-116. (in Chinese).
    [11]
    徐少一, 李伟, 廖凯锋, 等. 硅半导体辐射探测仪表国产化研制及性能研究[J]. 核电子学与探测技术, 2024, 44(4): 608-614. DOI: 10.3969/j.issn.0258-0934.2024.04.003.

    XU S Y, LI W, LIAO K F, et al. Research and Development of Domestic Silicon Semiconductor Radiation Detection Instruments and Their Performance[J]. Nuclear Electronics and Detection Technology, 2024, 44(4): 608-614. DOI: 10.3969/j.issn.0258-0934.2024.04.003.
    [12]
    郑海亮, 李兴东, 刘小丽, 等. CT-SD16探测器辐射剂量测量原理和参数设定[J]. 北京生物医学工程, 2012, 31(3): 278-282. DOI: 10.3969/j.issn.1002-3208.2012.03.12.

    ZHENG H L, LI X D, LIU X L, et al. Radiation Dose Measurement Principles and Parameter Settings of CT-SD16 Detector[J]. Beijing Biomedical Engineering, 2012, 31(3): 278-282. DOI: 10.3969/j.issn.1002-3208.2012.03.12.
    [13]
    庄静文, 郑钧正, 白玫. CT剂量指数估算方法研究[J]. 中国医学装备, 2016, 13(7): 1-3,4. DOI: 10.3969/J.ISSN.1672-8270.2016.07.001.

    ZHUANG J W, ZHENG J Z, BAI M. Research on Estimation Methods for CT Dose Index[J]. China Medical Equipment, 2016, 13(7): 1-3,4. DOI: 10.3969/J.ISSN.1672-8270.2016.07.001.
    [14]
    沈春花. 四种不同型号诊断X射线剂量仪的剂量探测技术概述[J]. 中国医学装备, 2005, 2(10): 33-34. DOI: 10.3969/j.issn.1672-8270.2005.10.013.

    SHEN C H. Overview of Dose Detection Technologies for Four Different Models of Diagnostic X-ray Dose Meters[J]. China Medical Equipment, 2005, 2(10): 33-34. DOI: 10.3969/j.issn.1672-8270.2005.10.013.
    [15]
    陈坤锋, 罗雄峰, 项毅, 等. 140mm电离室检定宽射线束CT辐射剂量指数的不确定度评定[J]. 仪器仪表标准化与计量, 2022(6): 32-34. DOI: 10.3969/j.issn.1672-5611.2022.06.011.

    CHEN K F, LUO X F, XIANG Y , et al. Uncertainty Assessment of 140mm Ionization Chamber for Calibration of Wide X-ray Beam CT Radiation Dose Index [J]. Instrumentation and Metrology, 2022(6): 32-34. DOI: 10.3969/j.issn.1672-5611.2022.06.011.(in Chinese).
    [16]
    郑海亮, 李兴东, 张鹏, 等. 多排螺旋CT五个剂量测量点位的统计学差异[J]. CT理论与应用研究, 2015, 24(3): 337-343. DOI: 10.15953/j.1004-4140.2015.24.03.02.

    ZHENG H L, LI X D, ZHANG P, et al. Statistical Differences of Five Dose Measurement Points in Multislice Spiral CT[J]. CT Theory and Applications Research, 2015, 24(3): 337-343. DOI: 10.15953/j.1004-4140.2015.24.03.02.

Catalog

    Article views (28) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return