ISSN 1004-4140
CN 11-3017/P
WANG Y, LIU P, WANG Y - N, et al. A Transformer-Enhanced Iterative Unrolling Network for Sparse-View CT Image Reconstruction[J]. CT Theory and Applications, xxxx, x(x): 1-16. DOI: 10.15953/j.ctta.2025.044.
Citation: WANG Y, LIU P, WANG Y - N, et al. A Transformer-Enhanced Iterative Unrolling Network for Sparse-View CT Image Reconstruction[J]. CT Theory and Applications, xxxx, x(x): 1-16. DOI: 10.15953/j.ctta.2025.044.

A Transformer-Enhanced Iterative Unrolling Network for Sparse-View CT Image Reconstruction

Funds: National Natural Science Foundation of China under grant (62071281); Local Science and Technology Development Fund Project Guided by the Central Government under grant (YDZJSX2021A003),
More Information
  • Received Date: February 13, 2025
  • Revised Date: February 19, 2025
  • Accepted Date: February 23, 2025
  • Available Online: March 26, 2025
  • Radiation dose reduction in Computed Tomography (CT) can be achieved by decreasing the number of projections. However, reconstructing CT images via filtered back projection algorithm from sparse-view projections often contains severe streak artifacts, affecting clinical diagnosis. To address this issue, this paper proposes TransitNet, an iterative unrolling deep neural network that combines model-driven data consistency, a physical a prior constraint, with deep learning’s feature extraction capabilities. TransitNet employs a novel iterative architecture, implementing flexible physical constraints through learnable data consistency operations, utilizing Transformer’s self-attention mechanism to model long-range dependencies in image features, and introducing linear attention mechanisms to reduce self-attention’s computational complexity from quadratic to linear. Extensive experiments demonstrate that this method exhibits significant advantages in both reconstruction quality and computational efficiency, effectively suppressing streak artifacts while preserving structures and details of images.

  • [1]
    SIDKY E Y, KAO C M, PAN X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J/OL]. Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics, 2006, 14(2): 119-139. DOI: 10.3233/XST-2006-00155.
    [2]
    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J/OL]. Physics in Medicine and Biology, 2008, 53(17): 4777-4807. DOI: 10.1088/0031-9155/53/17/021.
    [3]
    DO S, KARL W C, KALRA M K, et al. Clinical low dose CT image reconstruction using high-order total variation techniques[C/OL]//SPIE Medical Imaging. San Diego, California, United States, 2010: 76225D [2025-02-13]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi= 10.1117/12.844307. DOI: 10.1117/12.844307.
    [4]
    TIAN Z, JIA X, YUAN K, et al. Low-dose CT reconstruction via edge-preserving total variation regularization[J/OL]. Physics in Medicine and Biology, 2011, 56(18): 5949-5967. DOI: 10.1088/0031-9155/56/18/011.
    [5]
    LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction[J/OL]. Physics in Medicine and Biology, 2012, 57(23): 7923-7956. DOI: 10.1088/0031-9155/57/23/7923.
    [6]
    XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J/OL]. ACM Transactions on Graphics, 2012, 31(6): 1-10. DOI: 10.1145/2366145.2366158.
    [7]
    Ning Fang-Li, He Bi-Jing, Wei Juan, et al. An algorithm for image reconstruction based on lp norm[J/OL]. Acta Physica Sinica, 2013, 62(17): 174212. DOI: 10.7498/aps.62.174212.
    [8]
    SIDKY E Y, CHARTRAND R, BOONE J M, et al. Constrained TpV minimization for enhanced exploitation of gradient sparsity: Application to CT image reconstruction[J/OL]. IEEE Journal of Translational Engineering in Health and Medicine, 2014, 2: 1-18. DOI: 10.1109/JTEHM.2014.2300862.
    [9]
    RIGIE D S, LA RIVIÈRE P J. Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization[J/OL]. Physics in Medicine and Biology, 2015, 60(5): 1741-1762. DOI: 10.1088/0031-9155/60/5/1741.
    [10]
    ZHANG Z, CHEN B, XIA D, et al. Directional-TV algorithm for image reconstruction from limited-angular-range data[J/OL]. Medical Image Analysis, 2021, 70: 102030. DOI: 10.1016/j.media.2021.102030.
    [11]
    QIAO Z. A simple and fast ASD-POCS algorithm for image reconstruction[J/OL]. Journal of X-Ray Science and Technology, 2021, 29(3): 491-506. DOI: 10.3233/XST-210858.
    [12]
    QIAO Z, REDLER G, EPEL B, et al. A balanced total-variation-Chambolle-Pock algorithm for EPR imaging[J/OL]. Journal of Magnetic Resonance, 2021, 328: 107009. DOI: 10.1016/j.jmr.2021.107009.
    [13]
    QIAO Z, LIU P, FANG C, et al. Directional TV algorithm for image reconstruction from sparse-view projections in EPR imaging[J/OL]. Physics in Medicine & Biology, 2024, 69(11): 115051. DOI: 10.1088/1361-6560/ad4a1b.
    [14]
    JIANG M, TAO H W, CHENG K. Sparse view CT reconstruction algorithm based on non-local generalized total variation regularization[J]. CT Theory and Applications, 2025, 34(1): 129-139. DOI: 10.15953/j.ctta.2023.170.
    [15]
    2022 31 1 1 12 10.15953/j.ctta.2021.053 doi: 10.15953/j.ctta.2021.053
    [16]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[M/OL]//NAVAB N, HORNEGGER J, WELLS W M, et al. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: Vol. 9351. Cham: Springer International Publishing, 2015: 234-241 [2025-01-03]. http://link.springer.com/ 10.1007/978-3-319-24574-4_28. DOI: 10.1007/978-3-319-24574-4_28.
    [17]
    HAN Y S, YOO J, YE J C. Deep residual learning for compressed sensing ct reconstruction via persistent homology analysis[A/OL]. arXiv, 2016[2024-11-30]. http://arxiv.org/abs/1611.06391. DOI: 10.48550/arXiv.1611.06391.
    [18]
    JIN K H, MCCANN M T, FROUSTEY E, et al. Deep Convolutional Neural Network for Inverse Problems in Imaging[J/OL]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. DOI: 10.1109/TIP.2017.2713099.
    [19]
    CHEN H, ZHANG Y, KALRA M K, et al. Low-Dose CT with a residual encoder-decoder convolutional neural network[J/OL]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. DOI: 10.1109/TMI.2017.2715284.
    [20]
    GUAN S, KHAN A A, SIKDAR S, et al. Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal[J/OL]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 568-576. DOI: 10.1109/JBHI.2019.2912935.
    [21]
    ZHENG A, GAO H, ZHANG L, et al. A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT[J/OL]. Physics in Medicine & Biology, 2020, 65(24): 245030. DOI: 10.1088/1361-6560/ab8fc1.
    [22]
    KANDARPA V S S, PERELLI A, BOUSSE A, et al. LRR-CED: low-resolution reconstruction-aware convolutional encoder–decoder network for direct sparse-view CT image reconstruction[J/OL]. Physics in Medicine & Biology, 2022, 67(15): 155007. DOI: 10.1088/1361-6560/ac7bce.
    [23]
    YU J, ZHANG H, ZHANG P, et al. Unsupervised learning-based dual-domain method for low-dose CT denoising[J/OL]. Physics in Medicine & Biology, 2023, 68(18): 185010. DOI: 10.1088/1361-6560/acefa2.
    [24]
    ZHU Y Z, LV Q W, GUAN Y, et al. Low-dose CT reconstruction based on deep energy models[J]. CT Theory and Applications, 2022, 31(6): 709-720. DOI: 10.15953/j.ctta.2021.077.
    [25]
    HAN Y. Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction[J/OL]. Physics in Medicine & Biology, 2024, 69(8): 085019. DOI: 10.1088/1361-6560/ad31c7.
    [26]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[A/OL]. arXiv, 2023[2024-11-30]. http://arxiv.org/abs/1706.03762. DOI: 10.48550/arXiv.1706.03762.
    [27]
    DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[A/OL]. arXiv, 2021[2024-11-30]. http://arxiv.org/abs/2010.11929. DOI: 10.48550/arXiv.2010.11929.
    [28]
    QIAO Y Y, QIAO Z W. Low-dose CT image reconstruction method based on CNN and transformer coupling network[J]. CT Theory and Applications, 2022, 31(6): 697-707. DOI: 10.15953/j.ctta.2022.114.
    [29]
    LIU P, FANG C, QIAO Z. A dense and U-shaped transformer with dual-domain multi-loss function for sparse-view CT reconstruction[J/OL]. Journal of X-Ray Science and Technology, 2024, 32(2): 207-228. DOI: 10.3233/XST-230184.
    [30]
    YAN H, FANG C, LIU P, et al. CGP-Uformer: A low-dose CT image denoising Uformer based on channel graph perception[J/OL]. Journal of X-Ray Science and Technology, 2023, 31(6): 1189-1205. DOI: 10.3233/XST-230158.
    [31]
    FAN X L, WEN Y Q, QIAO Z W. Sparse reconstruction of computed tomography images with transformer enhanced U-net[J]. CT Theory and Applications, 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183.
    [32]
    LI Y, SUN X, WANG S, et al. MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer[J/OL]. Physics in Medicine & Biology, 2023, 68(9): 095019. DOI: 10.1088/1361-6560/acc2ab.
    [33]
    MCKERAHAN T. Linear Attention Mechanism: An efficient attention for semantic segmentation[J].
    [34]
    WANG S, LI B Z, KHABSA M, et al. Linformer: Self-attention with linear complexity[A/OL]. arXiv, 2020 [2024-11-30]. http://arxiv.org/abs/2006.04768. DOI: 10.48550/arXiv.2006.04768.
    [35]
    CHOROMANSKI K, LIKHOSHERSTOV V, DOHAN D, et al. Rethinking Attention with Performers[A/OL]. arXiv, 2022 [2024-11-30]. http://arxiv.org/abs/2009.14794. DOI: 10.48550/arXiv.2009.14794.
    [36]
    SHEN Z, ZHANG M, ZHAO H, et al. Efficient attention: attention with linear complexities[C/OL]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, 2021: 3530-3538[2025-01-03]. https://ieeexplore.ieee.org/document/9423033/. DOI: 10.1109/WACV48630.2021.00357.
    [37]
    KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[A/OL]. arXiv, 2020[2024-12-09]. https://arxiv.org/abs/2006.16236. DOI: 10.48550/ARXIV.2006.16236.
    [38]
    CHEN H, ZHANG Y, CHEN Y, et al. LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT[J/OL]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1333-1347. DOI: 10.1109/TMI.2018.2805692.
    [39]
    ZHANG Y, CHEN H, XIA W, et al. LEARN++: Recurrent dual-domain reconstruction network for compressed sensing CT[J/OL]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7(2): 132-142. DOI: 10.1109/TRPMS.2022.3222213.
    [40]
    CHAE S, YANG E, MOON W J, et al. Deep cascade of convolutional neural networks for quantification of enlarged perivascular spaces in the basal ganglia in magnetic resonance imaging[J/OL]. Diagnostics, 2024, 14(14): 1504. DOI: 10.3390/diagnostics14141504.
    [41]
    AGGARWAL H K, MANI M P, JACOB M. MoDL: Model-based deep learning architecture for inverse problems[J/OL]. IEEE Transactions on Medical Imaging, 2019, 38(2): 394-405. DOI: 10.1109/TMI.2018.2865356.
    [42]
    WANG J, ZENG L, WANG C, et al. ADMM-based deep reconstruction for limited-angle CT[J/OL]. Physics in Medicine & Biology, 2019, 64(11): 115011. DOI: 10.1088/1361-6560/ab1aba.
    [43]
    LIAO H, LIN W A, ZHOU S K, et al. ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction[J/OL]. IEEE Transactions on Medical Imaging, 2020, 39(3): 634-643. DOI: 10.1109/TMI.2019.2933425.
    [44]
    PUTZKY P, WELLING M. Recurrent inference machines for solving inverse problems[A/OL]. arXiv, 2017[2024-11-30]. http://arxiv.org/abs/1706.04008. DOI: 10.48550/arXiv.1706.04008.
    [45]
    XIANG J, DONG Y, YANG Y. FISTA-Net: Learning a Fast Iterative Shrinkage Thresholding Network for Inverse Problems in Imaging[J/OL]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339. DOI: 10.1109/TMI.2021.3054167.
    [46]
    WU W, HU D, NIU C, et al. DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction[J/OL]. IEEE Transactions on Medical Imaging, 2021, 40(11): 3002-3014. DOI: 10.1109/TMI.2021.3078067.
    [47]
    GENZEL M, GÜHRING I, MACDONALD J, et al. Near-exact recovery for tomographic inverse problems via deep learning[A/OL]. arXiv, 2022[2024-11-30]. http://arxiv.org/abs/2206.07050. DOI: 10.48550/arXiv.2206.07050.
    [48]
    SU T, CUI Z, YANG J, et al. Generalized deep iterative reconstruction for sparse-view CT imaging[J/OL]. Physics in Medicine & Biology, 2022, 67(2): 025005. DOI: 10.1088/1361-6560/ac3eae.
    [49]
    JIA Y, MCMICHAEL N, MOKARZEL P, et al. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction[J/OL]. Physics in Medicine & Biology, 2022, 67(24): 245004. DOI: 10.1088/1361-6560/aca513.
    [50]
    SUN C, LIU Y, YANG H. An efficient deep unrolling network for sparse-view CT reconstruction via alternating optimization of dense-view sinograms and images[J/OL]. Physics in Medicine & Biology, 2024[2024-12-22]. https://iopscience.iop.org/article/ 10.1088/1361-6560/ad9dac. DOI: 10.1088/1361-6560/ad9dac.

Catalog

    Article views (161) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return