Citation: | HU H, SUN X Q, LI Y H, et al. Dual-view CT Reconstruction Algorithm Based on Gradient Information Constraints[J]. CT Theory and Applications, 2025, 34(4): 525-533. DOI: 10.15953/j.ctta.2025.116. (in Chinese). |
Computed tomography (CT) technology has demonstrated significant application value in industrial inspection owing to its non-destructive testing capabilities, high resolution, and visualization features. However, in certain industrial inspection scenarios, extremely limited scanning conditions pose substantial challenges for projection data acquisition, restricting the application of traditional reconstruction methods. To address this challenge, this study proposes an orthogonal dual-view 3D reconstruction network tailored for rapid CT imaging. The proposed method employs an encoder–decoder architecture, utilizing 2D convolutions instead of 3D convolutions to infer the depth dimension of CT volumes through feature channels, thereby enhancing model inference speed. Additionally, gradient information and gradient loss are introduced to strengthen the edge recovery capability of the network. The method is validated on walnut and Fuze datasets. Experimental results showed that reconstructing a volume with a resolution of 128 required only 0.19 s, and the structural similarity of the reconstructed images was higher than 0.98. This approach demonstrates effective capability in inferring 3D CT volumes from dual-view 2D projections, revealing its future potential in rapid CT imaging.
[1] |
刘勇, 曾理. 工业CT图像的管道圆柱度误差测量[J]. 计算机工程与应用, 2011, 47(13): 199-200, 233. DOI: 10.3778/j.issn.1002-8331.2011.13.056.
LIU Y, ZENG L. Cylindricity error evaluation of pipe in industrial CT images[J]. Computer Engineering and Applications, 2011, 47(13): 199-200, 233. DOI: 10.3778/j.issn.1002-8331.2011.13.056. (in Chinese).
|
[2] |
汤戈, 赵欣雨, 王宇翔, 等. 工业CT技术在地球科学中的应用[J]. CT理论与应用研究(中英文), 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091.
TANG G, ZHAO X Y, WANG Y X, et al. Applications of industrial computed tomography technology in the geosciences[J]. CT Theory and Applications, 2024, 33(1): 119-134. DOI: 10.15953/j.ctta.2023.091. (in Chinese).
|
[3] |
邸江磊, 林俊成, 钟丽云, 等. 基于深度学习的稀疏或有限角度CT重建方法研究综述[J]. 激光与光电子学进展, 2023, 60(8): 32-69. DOI: 10.3788/LOP230488.
DI J L, LIN J C, ZHONG L Y, et al. Review of sparse-view or limited-angle CT reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 2023, 60(8): 32-69. DOI:10.3788/LOP230488. (in Chinese).
|
[4] |
樊雪林, 文昱齐, 乔志伟. 基于Transformer增强型U-net的CT图像稀疏重建与伪影抑制[J]. CT理论与应用研究(中英文), 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183.
FAN X L, WEN Y Q, QIAO Z W. Sparse reconstruction of computed tomography images with transformer enhanced U-net[J]. CT Theory and Applications, 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183. (in Chinese).
|
[5] |
LI X, WANG S, CHEN P, et al. 3-D inspection method for industrial product assembly based on single X-ray projections[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14.
|
[6] |
TAN Z, LI J, TAO H, et al. XctNet: Reconstruction network of volumetric images from a single X-ray image[J]. Computerized Medical Imaging and Graphics, 2022, 98: 102067. DOI: 10.1016/j.compmedimag.2022.102067.
|
[7] |
LIU X, YU J, SUN Y, et al. Tiny defect oriented single-view CT reconstruction based on a hybrid framework[J]. IEEE Transactions on Instrumentation and Measurement, 2024.
|
[8] |
SUN X, LI X, CHEN P. An ultra-sparse view CT imaging method based on X-ray2CTNet[J]. IEEE Transactions on Computational Imaging, 2022, 8: 733-742. DOI: 10.1109/TCI.2022.3201390.
|
[9] |
YING X, GUO H, MA K, et al. X2CT-GAN: Reconstructing CT from biplanar X-rays with generative adversarial networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 10619-10628.
|
[10] |
HUANG C, LI K, FANG J, et al. 3DSP-GAN: A 3D-to-3D network for CT reconstruction from biplane X-rays[C]//2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2024, 7: 931-935.
|
[11] |
SHI Z, GENG K, ZHAO X, et al. XRayWizard: Reconstructing 3-D lung surfaces from a single 2-D chest X-ray image via Vision Transformer[J]. Medical Physics, 2024, 51(4): 2806-2816. DOI: 10.1002/mp.16781.
|
[12] |
WANG Y, SUN Z L, ZENG Z, et al. TRCT-GAN: CT reconstruction from biplane X-rays using transformer and generative adversarial networks[J]. Digital Signal Processing, 2023, 140: 104123. DOI: 10.1016/j.dsp.2023.104123.
|
[13] |
孙雪琴. 基于超稀疏视角CT成像的固体火箭发动机燃面退移测试方法研究[D]. 太原: 中北大学, 2024. DOI: 10.27470/d.cnki.ghbgc.2024.000018.
SUN X Q. Testing method of solid rocket motor burning surfaceregression based on ultra-sparse view CT imaging[D]. Taiyuan: North University of China, 2024. DOI:10.27470/d.cnki.ghbgc.2024.000018. (in Chinese).
|
[14] |
杨甜添. 基于多尺度特征和自注意力机制的MRI心脏图像分割算法研究[D]. 武汉: 武汉纺织大学, 2024. DOI: 10.27698/d.cnki.gwhxj.2024.000395.
YANG T T. Research on MRI Heart Image segmentationalgorithm based on multi-scale features and self-attention mechanism[D]. Wuhan: Wuhan Textile University, 2024. DOI:10.27698/d.cnki.gwhxj.2024.000395. (in Chinese).
|
[15] |
邱怡, 包乾宗, 马铭, 等. 基于U-Net网络的二维小波域地震数据随机噪声衰减[J]. 石油物探, 2023, 62(5): 878-890. DOI: 10.12431/issn.1000-1441.2023.62.05.007.
QIU Y, BAO Q Z, MA M, et al. Seismic data random noise attenuation using U-Net network in the 2D discrete wavelet domain[J]. Geophysical Prospecting for Petroleum, 2023, 62(5): 878-890. DOI: 10.12431/issn.1000-1441.2023.62.05.007. (in Chinese).
|
[16] |
孙卓群, 赵加祥. 基于多尺度注意力小波网络的可适应病变规模超声乳腺图像分割[J]. 微电子学与计算机, 2023, 40(12): 45-52. DOI: 10.19304/J.ISSN1000-7180.2022.0901.
SUN Z Q, ZHAO J X. Adaptive lesion scale ultrasound breast image segmentation based on multi-scale attention wavelet network[J]. Microelectronics & Computer, 2023, 40(12): 45-52. DOI: 10.19304/J.ISSN1000-7180.2022.0901. (in Chinese).
|
[17] |
苏申申, 周卫, 周淋芋, 等. 基于MobileViT轻量化网络的蘑菇图像分类算法改进[J]. 现代计算机, 2024, 30(21): 69-73.
|
[18] |
王苏恺. 基于深度学习的稀疏角CT重建算法研究[D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.001319.
WANG S K. Research on sparse-view CT reconstructionalgorithm based on deep learning[D]. Taiyuan: North University of China, 2022. DOI:10.27470/d.cnki.ghbgc.2022.001319. (in Chinese).
|
[19] |
向锐. 基于边缘和结构一致性的红外−可见光图像转换算法研究[D]. 武汉: 华中科技大学, 2023. DOI: 10.27157/d.cnki.ghzku.2023.003074.
XIANG R. Research on infrared-visible image conversion algorithm based on edge and structure consistency[D]. Wuhan: Huazhong University of Science and Technology, 2023. DOI:10.27157/d.cnki.ghzku.2023.003074. (in Chinese).
|
[20] |
SHEN L, ZHAO W, XING L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning[J]. Nature Biomedical Engineering, 2019, 3(11): 880-888. DOI: 10.1038/s41551-019-0466-4.
|
[1] | WANG Yu, LIU Peng, WANG Yanan, QIAO Zhiwei. A Transformer-enhanced Iterative Unrolling Network for Sparse-view CT Image Reconstruction[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.044 |
[2] | LIU Bicheng, YI Xi, ZONG Chunguang, XU Yanwei, LI Liang. Ring-artifact Correction Method for Large-size Object CT Images Based on Gradient Featured Cluster Analysis[J]. CT Theory and Applications, 2024, 33(6): 781-789. DOI: 10.15953/j.ctta.2024.153 |
[3] | LIU Yanting, ZHONG Chengcheng, JIANG Guoming, ZHAO Dapeng. Subduction Dynamics at the Northwestern Pacific Slab Edge: Constraints of Tomography in Kamchatka[J]. CT Theory and Applications, 2024, 33(2): 135-148. DOI: 10.15953/j.ctta.2023.223 |
[4] | CHEN Jian-lin, YAN Bin, LI Lei, XI Xiao-qi, WANG Lin-yuan. Reviews of the Model of Projection Matrix of CT Reconstruction Algorithm[J]. CT Theory and Applications, 2014, 23(2): 317-328. |
[5] | XIA Jing-tao, WANG Qun-shu, LI Bin-kang, HEI Dong-wei, SHENG Liang, MA Ji-ming, WEI Fu-li, MA Ge. Simulation Study of Spherical Multilayer Object CT Reconstruction from Sparse Projection Data[J]. CT Theory and Applications, 2014, 23(2): 249-256. |
[6] | WANG Chao, YAN Bin, LI Lei, ZENG Lei, LI Jian-xin. An Adaptive Regularization Iterative Reconstruction Algorithm on the Basis of a Sparse Constraint[J]. CT Theory and Applications, 2012, 21(4): 689-698. |
[7] | LIANG Wen-xuan, HU Guang-shu. On the 2D Fan-beam CT Reconstruction from Insufficient Projection Data[J]. CT Theory and Applications, 2010, 19(3): 1-12. |
[8] | DENG Jing-fei, LI Jian-xin, LI Lei, YAN Bin. Review of Accelerated CT Reconstruction Based on FPGA[J]. CT Theory and Applications, 2010, 19(2): 25-33. |
[9] | XIE Dan-yan, JING Xi-li, REN Guo-chao. CT Reconstruction Algorithms with Sparse Radiographs Based on Bayes Estimates[J]. CT Theory and Applications, 2008, 17(4): 8-14. |
[10] | LI Hua-xin. Conjugate Gradient Applied to Image Reconstruction[J]. CT Theory and Applications, 2007, 16(2): 31-35. |
1. |
刘海燕,邱晓晖,章辉庆,锁咏梅,王超,王亚丽. 能谱CT单能量成像对结直肠癌供血动脉图像质量及辐射剂量的影响. 中国CT和MRI杂志. 2025(01): 159-161 .
![]() | |
2. |
叶雄鑫,刘元芬,汤博荣,陈依林,郑莞怡,薛莉薇,张孝勇. 深度学习图像重建和能谱成像在低对比剂流速胸主动脉CTA中的价值. CT理论与应用研究. 2024(06): 683-691 .
![]() | |
3. |
何亮,唐彩银,张继,田为中,朱鹏飞. 能谱CT金属伪影抑制算法在胸部穿刺活检中的应用价值. 中国CT和MRI杂志. 2023(11): 50-52 .
![]() |