ISSN 1004-4140
CN 11-3017/P
LIU Chang, YANG Xiao-ling, QIU Jun. The Image Reconstruction Iterative Algorithm Based on Calculating Points with Fractal Corrector[J]. CT Theory and Applications, 2013, 22(2): 237-243.
Citation: LIU Chang, YANG Xiao-ling, QIU Jun. The Image Reconstruction Iterative Algorithm Based on Calculating Points with Fractal Corrector[J]. CT Theory and Applications, 2013, 22(2): 237-243.

The Image Reconstruction Iterative Algorithm Based on Calculating Points with Fractal Corrector

More Information
  • Received Date: December 09, 2012
  • Available Online: December 12, 2022
  • We introduce fractal corrector in the iterative algorithm for image reconstruction based on calculating points discrete model.The projection line is surrounded by a self-similar string formed by the Hilbert curve units.The Hilbert curve unit’s attenuation weight to projection has clear geometrical meaning as well as physical meaning.The line integral of projection is approximated accurately by compacting the calculating points.The Hilbert curve unit is an effective corrector in improving the algorithm since the uniform templates are formed by the self-similarity of fractal structure.In addition,the symmetry of the model could be used to accelerate the computing speed as well as to improve the imaging precision.
  • Related Articles

    [1]YANG Zhenxing, HAO Fene, ZHAO Lei, YANG Xiaoguang, LIU aishi. Characteristic Analysis of the Time-density Curve of Volume Shuttle CT Perfusion of Benign Parotid Tumors[J]. CT Theory and Applications, 2021, 30(5): 575-582. DOI: 10.15953/j.1004-4140.2021.30.05.05
    [2]FENG Mei, AN Meijian. Method on 3D Tomography of S-wave Velocity Azimuthal Anisotropy by Using Surface-wave Dispersion Curves[J]. CT Theory and Applications, 2020, 29(4): 381-397. DOI: 10.15953/j.1004-4140.2020.29.04.01
    [3]WANG Lin, QU Gangrong. The Numerical Solution of the Radon Transform Along the Circular Curve[J]. CT Theory and Applications, 2020, 29(3): 329-336. DOI: 10.15953/j.1004-4140.2020.29.03.09
    [4]HAN Fei, WANG Zhe-jiang, YAN Ying-wei. Research on Inversion of Surface Wave Base Mode Dispersion Curve Based on Generalized Pattern Search[J]. CT Theory and Applications, 2017, 26(3): 309-320. DOI: 10.15953/j.1004-4140.2017.26.03.07
    [5]QIAO Zhi-wei. On Implementation and Stability Analysis of Two Types of Finite Hilbert Transforms Used in Backprojection Filtration Algorithms[J]. CT Theory and Applications, 2014, 23(4): 561-568.
    [6]WANG Li-xin, HUANG Guang-tan, ZHANG Bin-bin, ZHU Wen-bo, ZHANG Jun-hua. Suppressing Method Study and Application of Seismic Scattered Wave Based on Local Hyperbolic Radon Transform[J]. CT Theory and Applications, 2014, 23(1): 27-36.
    [7]WANG Ye-qing, ZHOU Ting-liang, ZHUO Guo-ran, LI Xiao-feng. Application of MSCT with Multi-planar Reformation and Curve-planar Reformation Post-processing Techniques in the Diagnosis of Mechanical Small Bowel Obstruction[J]. CT Theory and Applications, 2013, 22(3): 515-522.
    [8]QIU Jun, WANG Liang. Symmetric Mesh-Iterative Algorithms for Image Reconstruction[J]. CT Theory and Applications, 2007, 16(2): 20-30.
    [9]Ming JIANG, Zao-tian ZHANG. Review on POCS Algorithms for Image Reconstruction[J]. CT Theory and Applications, 2003, 12(1): 51-55.
    [10]XU Shun-fang, LI Zhen-yu, LI Jin-zhan. Correction Study of S Equivalence to Sounding Curves in Embankment Exploration[J]. CT Theory and Applications, 2003, 12(1): 17-20.
  • Cited by

    Periodical cited type(6)

    1. 戴书华,刘国芳,向东生. 肺磨玻璃结节CT值测量在早期癌症诊断中的意义. 中华肺部疾病杂志(电子版). 2019(06): 770-771 .
    2. 王辉,刘洪,黄海东,赵蕤. 肺部磨玻璃结节样腺癌的MSCT特征与病理对照分析. CT理论与应用研究. 2018(01): 93-99 . 本站查看
    3. 张茜茜,杨会珍,李晓亮,陈卓昌. 磨玻璃密度肺结节的CT影像学特征及其与病理特征的相关性研究. 中国CT和MRI杂志. 2018(06): 12-15 .
    4. 董志辉,陆方方,高鹏,莫哲恒,杜诗霖,刘庆生. MSCT在肺磨玻璃结节诊断中的应用. 中国CT和MRI杂志. 2018(04): 63-65 .
    5. 万九峰,马党捐,吴颖. CTPA在肺动脉栓塞中的诊断价值及其与DSA的相关性. 检验医学与临床. 2018(05): 608-610 .
    6. 李秀平,耿园园,冯长明. 多层螺旋CT诊断肺局灶性磨玻璃密度结节的临床价值分析. 影像研究与医学应用. 2018(09): 162-164 .

    Other cited types(2)

Catalog

    Article views (595) PDF downloads (7) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return