ISSN 1004-4140
CN 11-3017/P
WEI Y N, SHI Z J, YU T X. Application of joint inversion of different electrode arrays in ancient mausoleum detection[J]. CT Theory and Applications, 2022, 31(3): 280-292. DOI: 10.15953/j.ctta.2022.008. (in Chinese).
Citation: WEI Y N, SHI Z J, YU T X. Application of joint inversion of different electrode arrays in ancient mausoleum detection[J]. CT Theory and Applications, 2022, 31(3): 280-292. DOI: 10.15953/j.ctta.2022.008. (in Chinese).

Application of Joint Inversion of Different Electrode Arrays in Ancient Mausoleum Detection

More Information
  • Received Date: January 11, 2022
  • Accepted Date: March 17, 2022
  • Available Online: March 28, 2022
  • Published Date: May 22, 2022
  • Electrical resistivity tomography is a popular geophysical method and has been applied in shallow exploration, involving hydrology, archaeology, and geology, in recent years. To enhance the resolution of electrical resistivity tomography and deal with complex geological settings, we propose the weighted combined inversion of different electrode arrays based on the Jacobian matrix, and then, taking Wenner and dipole-dipole datasets as examples, test its effectiveness on synthetic models and a field case of detecting ancient mausoleum. The results show that the resolution of the weighted combined inversion results is superior to that of a single electrode array in transverse and longitudinal directions, and in the field case, it is demonstrated that the weighted combined inversion algorithm can alleviate the inherent defects of U-shaped electrode array, reduce the ambiguity of inversion, and better constrain the width of the mausoleum.
  • [1]
    COSTALL A, HARRIS B, PIGOIS J P. Electrical resistivity imaging and the saline water interface in high-quality coastal aquifers[J]. Surveys in Geophysics, 2018, 39(4): 753−816. doi: 10.1007/s10712-018-9468-0
    [2]
    PIDLISECKY A, MORAN T, HANSEN B, et al. Electrical resistivity imaging of seawater intrusion into the monterey bay aquifer system[J]. Groundwater, 2016, 54(2): 255−261. doi: 10.1111/gwat.12351
    [3]
    ABBAS A M, GHAZALA H H, MESBAH H S, et al. Implementation of ground penetrating radar and electrical resistivity tomography for inspecting the greco-roman necropolis at kilo 6 of the golden mummies valley, Bahariya Oasis, Egypt[J]. Nriag Journal of Astronomy & Geophysics, 2016, 5(1): 147−159.
    [4]
    KOLAWOLE F, ATEKWANA E A, LAÓ-DÁVILA D A, et al. High resolution electrical resistivity and aeromagnetic imaging reveal the causative fault of the 2009 Mw 6.0 Karonga, Malawi Earthquake[J]. Geophysical Journal International, 2018, 213(2): 1412−1425. doi: 10.1093/gji/ggy066
    [5]
    DAHLIN T, ZHOU B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays[J]. Geophysical Prospecting, 2004, 52(5): 379−398. doi: 10.1111/j.1365-2478.2004.00423.x
    [6]
    NEYAMADPOUR A, wan ABDULLAH W A T, TAIB S, et al. Comparison of Wenner and dipole-dipole arrays in the study of an underground three-dimensional cavity[J]. Journal of Geophysics and Engineering, 2010, 7(1): 30−40. doi: 10.1088/1742-2132/7/1/003
    [7]
    STUMMER P, MAURER H, GREEN A G. Experimental design: Electrical resistivity data sets that provide optimum subsurface information[J]. Geophysics, 2004, 69(1): 120−139. doi: 10.1190/1.1649381
    [8]
    de la VEGA M, OSELLA A, LASCANO E. Joint inversion of Wenner and dipole-dipole data to study a gasoline-contaminated soil[J]. Journal of Applied Geophysics, 2003, 54: 97−109. doi: 10.1016/j.jappgeo.2003.08.020
    [9]
    ATHANASIOU E N, TSOURLOS P I, PAPAZACHOS C B, et al. Combined weighted inversion of electrical resistivity data arising from different array types[J]. Journal of Applied Geophysics, 2007, 62(2): 124−140. doi: 10.1016/j.jappgeo.2006.09.003
    [10]
    LOKE M H, WILKINSON P B, CHAMBERS J E. Fast computation of optimized electrode arrays for 2D resistivity surveys[J]. Computers and Geosciences, 2010, 36(11): 1414−1426. doi: 10.1016/j.cageo.2010.03.016
    [11]
    ISHOLA K S, NAWAWI M N M, ABDULLAH K. Combining multiple electrode arrays for two-dimensional electrical resistivity imaging using the unsupervised classification technique[J]. Pure and Applied Geophysics, 2015, 172(6): 1615−1642. doi: 10.1007/s00024-014-1007-4
    [12]
    谭茂金, 石耀霖, 王晓杰. 多物理场测井数据联合反演研究进展[J]. 地球物理学进展, 2008,23(5): 1520−1525.
    [13]
    江沸菠, 戴前伟, 董莉. 基于主成分-正则化极限学习机的超高密度电法非线性反演[J]. 地球物理学报, 2015,58(9): 3356−3369. DOI: 10.6038/cjg20150928.

    JIANG F B, DAI Q W, DONG L. Ultra-high density resistivity nonlinear inversion based on principal component-regularized ELM[J]. Chinese Journal of Geophysics, 2015, 58(9): 3356−3369. DOI: 10.6038/cjg20150928. (in Chinese).
    [14]
    PIDLISECKY A, HABER E, KNIGHT R. Resinvm3D: A 3D resistivity inversion package[J]. Geophysics, 2007, 72(2): 1−10.
    [15]
    韩波, 窦以鑫, 丁亮. 电阻率成像的混合正则化反演算法[J]. 地球物理学报, 2012,55(3): 970−980. DOI: 10.6038/j.issn.0001-5733.2012.03.027.

    HAN B, DOU Y X, DING L. Electrical resistivity tomography by using a hybrid regularization[J]. Chinese Journal of Geophysics, 2012, 55(3): 970−980. DOI: 10.6038/j.issn.0001-5733.2012.03.027. (in Chinese).
    [16]
    ARMIJO L. Minimization of functions having Lipschitz continuous first partial derivatives[J]. Pacific Journal of Mathematics, 1966, 16(1): 1−3. doi: 10.2140/pjm.1966.16.1
    [17]
    LOKE M H, CHAMBERS J E, RUCKER D F, et al. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics, 2013, 95: 135−156. doi: 10.1016/j.jappgeo.2013.02.017
    [18]
    LOKE M H, BARKER R D. Practical techniques for 3D resistivity surveys and data inversion1[J]. Geophysical Prospecting, 2010, 44(3): 499−523.
    [19]
    高级, 张海江, 秦臻. 基于共轭梯度的全通道3D井地井电阻率成像研究[J]. 地球物理学进展, 2017, (1): 141-147.

    GAO J, ZHANG H J, QIN Z. 3D full channel well-surface-well resistivity tomography based on conjugate gradient[J]. Progress in Geophysics, 2017, 32(1): 135-0141, DOI:10.6038/pg20170118. (in Chinese).
    [20]
    余天祥, 石战结, 刘杰, 等. 多方位拟3D电法技术在古墓葬探测中的应用[J]. CT理论与应用研究, 2018,27(6): 727−738. DOI: 10.15953/j.1004-4140.2018.27.06.06.

    YU T X, SHI Z J, LIU J, et al. Application of multi-azimuth pseudo-3D electrical resistivity tomography in the investigation of ancient mausoleums[J]. CT Theory and Applications, 2018, 27(6): 727−738. DOI: 10.15953/j.1004-4140.2018.27.06.06. (in Chinese).
    [21]
    DAS P, MOHANTY P R. Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working: A numerical study[J]. Environmental Earth Sciences, 2016, 75(8): 661. doi: 10.1007/s12665-016-5404-0
  • Related Articles

    [1]HE Junlin, CHEN Wenjing, HU Lili, WANG Yongsheng, CHEN Jing, WU Ming. Predicting Cervical Lymph Node Metastasis Using Preoperative Multiparameter Data Based on Imaging, Serology, and Clinical Features in Unifocal Papillary Thyroid Carcinoma[J]. CT Theory and Applications, 2025, 34(4): 686-693. DOI: 10.15953/j.ctta.2024.112
    [2]QIN Huilin, OU Jing, GOU Yueqin, WANG Yuesu, LUO Hui, ZHANG Xiaoming, FU Maoyong, CHEN Tianwu. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, 2025, 34(3): 427-438. DOI: 10.15953/j.ctta.2025.060
    [3]GAO Bo, ZHANG Jingbin, MI Huizhi, SUN Haiqiao, LI Xiaohui, WU Jiaxing, ZHANG Kexin, WANG Shaotong, SU Xuan, CUI Xinyue. Study on the Nomogram Model Based on Dual-energy Computed Tomography for Predicting Lymph Node Metastasis in Papillary Thyroid Carcinoma[J]. CT Theory and Applications, 2025, 34(1): 31-36. DOI: 10.15953/j.ctta.2024.155
    [4]ZHU Zhengqi, DUAN Shufeng, GONG Haipeng. Diagnostic Value of CT-detected Extramural Vessel Invasion in Lymph Node Metastasis of Gastric Cancer[J]. CT Theory and Applications, 2024, 33(2): 207-212. DOI: 10.15953/j.ctta.2023.005
    [5]TIAN Jiangyu, TAN Zhiwei. Evaluation of CT in Predicting Central Lymph Node Metastasis of Papillary Thyroid Microcarcinoma[J]. CT Theory and Applications, 2023, 32(1): 90-96. DOI: 10.15953/j.1004-4140-2023.32.01.10
    [6]FENG Li, CHEN Weibin, LI Gai, ZHOU Wei. The Diagnostic Value of Multislice Spiral CT in Lymph Node Metastasis of Colon Cancer[J]. CT Theory and Applications, 2021, 30(1): 124-130. DOI: 10.15953/j.1004-4140.2021.30.01.13
    [7]XU Mei, LIU Chun-lan, WU Yan-li, HE Ping, WANG Jian, ZHOU Xiao-ling, GAO Yi-jun. Clinical Value of Gemstone Spectral CT in the Diagnosis of Regional Lymph Node Metastasis of Early-stage Cervical Carcinoma[J]. CT Theory and Applications, 2018, 27(4): 433-438. DOI: 10.15953/j.1004-4140.2018.27.04.02
    [8]WU Yan-chun, QIAN Bin. Effect of CT Spectral Diagnosis on Prognosis of Patients with Lymph Node Metastasis and its Prognostic Value[J]. CT Theory and Applications, 2018, 27(2): 179-186. DOI: 10.15953/j.1004-4140.2018.27.02.06
    [9]ZHAO De-ming. CT Diagnosis of Papillary Carcinoma of Breast[J]. CT Theory and Applications, 2015, 24(1): 111-116. DOI: 10.15953/j.1004-4140.2015.24.01.13
    [10]ZHU Lan, PAN Zi-lai. The Utilization of Diffusion-weighted Magnetic Resonance Imaging in the Detection of Lymph-node Metastasis in Rectal Cancer[J]. CT Theory and Applications, 2014, 23(3): 527-533.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return