ISSN 1004-4140
CN 11-3017/P
TANG S, WU Y T, XING H, et al. Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area[J]. CT Theory and Applications, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081. (in Chinese).
Citation: TANG S, WU Y T, XING H, et al. Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area[J]. CT Theory and Applications, 2023, 32(1): 27-34. DOI: 10.15953/j.ctta.2022.081. (in Chinese).

Combined Application of High-density Electrical Method and Transient Electromagnetic Method in Gobi Desert Area

More Information
  • Received Date: April 21, 2022
  • Accepted Date: June 01, 2022
  • Available Online: June 05, 2022
  • Published Date: January 30, 2023
  • This study probed the existence of groundwater in a mineral concentration area, using high-density electrical and transient electromagnetic methods. Our objective was to understand the dynamic changes in groundwater resources accurately and support the development of a sustainable ecological environment in the Gobi Desert area. The study demonstrates that the combination of the high-density electrical and transient electromagnetic methods guides the hydrological drilling construction in this area effectively. It also provides a reference for the selection and application of geophysical exploration methods under similar geological conditions for future studies.
  • [1]
    王瑞丰, 温来福, 程久龙, 等. 高密度电法与瞬变电磁法联合勘查河北承德地区基岩裂隙水[J]. 地球科学与环境学报, 2020,42(6): 784−790. DOI: 10.19814/j.jese.2020.06013.

    WANG R F, WEN L F, CHENG J L, et al. Joint detection of bedrock fissure water using high-density electrical method and transient electromagnetic method in Chengde area of Hebei, China[J]. Journal of Earth Science and Environment, 2020, 42(6): 784−790. DOI: 10.19814/j.jese.2020.06013. (in Chinese).
    [2]
    张保祥, 刘春华. 瞬变电磁法在地下水勘查中的应用综述[J]. 地球物理学进展, 2004,19(3): 537−542. doi: <10.3969/j.issn.1004-2903.2004.03.008

    ZHANG B X, LIU C H. Summarization on applications to groundwater exploration by using transient electromagnetic methods[J]. Progress in Geophysics, 2004, 19(3): 537−542. (in Chinese). doi: <10.3969/j.issn.1004-2903.2004.03.008
    [3]
    李国占, 孙银行. 地下水地球物理勘查技术模式[J]. 物探与化探, 2010,34(2): 202−204.

    LI G Z, SUN Y H. A tentative discussion on a technological mode for groundwater geophysical exploration[J]. Geophysical and Geochemical Exploration, 2010, 34(2): 202−204. (in Chinese).
    [4]
    王星明, 郭栋, 李嘉. 水资源勘查中综合电法勘探方法技术与应用[J]. 物探与化探, 2011,35(1): 65−69.

    WANG M X, GUO D, LI J. The integrated electrical prospecting technology and its application to water resource exploration[J]. Geophysical and Geochemical Exploration, 2011, 35(1): 65−69. (in Chinese).
    [5]
    宋希利, 宋鹏, 田明阳, 等. 物探方法在侵入岩地区抗旱找水定井中的应用[J]. 地球物理学进展, 2012,27(3): 1280−1286. DOI: 10.6038/j.issn.1004-2903.2012.03.057.

    SONG X L, SONG P, TIAN M Y, et al. Geophysical prospecting method in intrusive rocks area fight a drought to find water wells set[J]. Progress in Geophysics, 2012, 27(3): 1280−1286. DOI: 10.6038/j.issn.1004-2903.2012.03.057. (in Chinese).
    [6]
    苏永军, 马震, 孟利山, 等. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 2015,29(2): 265−271. doi: 10.3969/j.issn.1000-8527.2015.02.007

    SU Y J, MA Z, MENG L S, et al. Application of high-density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscience, 2015, 29(2): 265−271. (in Chinese). doi: 10.3969/j.issn.1000-8527.2015.02.007
    [7]
    孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017,41(1): 52−57. DOI: 10.11720/wtyht.2017.1.08.

    SUN Z R, YANG D C, ZHAO X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1): 52−57. DOI: 10.11720/wtyht.2017.1.08. (in Chinese).
    [8]
    康方平, 蒋建良, 彭杰, 等. 综合物探方法在湖南某贫水板岩地区找水的应用研究[J]. 工程地球物理学报, 2020,17(2): 258−264. DOI: 10.3969/j.issn.1672-7940.2020.02.018.

    KANG F P, JIANG J L, PENG J, et al. Application of integrated geophysical method to water search in a poor slate region of Hunan province[J]. Chinese Journal of Engineering Geophysics, 2020, 17(2): 258−264. DOI: 10.3969/j.issn.1672-7940.2020.02.018. (in Chinese).
    [9]
    潘剑伟, 张成丽, 鲁恺, 等. SNMR联合SP用于滑动带水体赋存状态的探测研究[J]. CT理论与应用研究, 2021,30(1): 23−34. DOI: 10.15953/j.1004-4140.2021.30.01.03.

    PAN J W, ZHANG C L, LU K, et al. The combined use of surface nuclear magnetic resonance and self-potential in the research of groundwater state in the landslide[J]. CT Theory and Applications, 2021, 30(1): 23−34. DOI: 10.15953/j.1004-4140.2021.30.01.03. (in Chinese).
    [10]
    黄国民, 李世平, 陶毅, 等. 广西碎屑岩地区电法找水实例[J]. 物探与化探, 2019,43(1): 77−83. DOI: 10.11720/wtyht.2019.2134.

    HUANG G M, LI S P, TAO Y, et al. A case study of water prospecting by electrical method in clastic rock area of Guangxi[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 77−83. DOI: 10.11720/wtyht.2019.2134. (in Chinese).
    [11]
    马吉静. 高密度电阻率法的异常识别和推断-以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019,34(4): 1489−1498. DOI: 10.6038/pg2019CC0054.

    MA J J. Anomaly identification and inference of high density resistivity method: Take Karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489−1498. DOI: 10.6038/pg2019CC0054. (in Chinese).
    [12]
    底青云, 倪大来, 王若. 高密度电阻率成像[J]. 地球物理学进展, 2003,18(2): 323−326. doi: 10.3969/j.issn.1004-2903.2003.02.023

    DI Q Y, NI D L, WANG R. High-density resistivity image[J]. Progress in Geophysics, 2003, 18(2): 323−326. (in Chinese). doi: 10.3969/j.issn.1004-2903.2003.02.023
    [13]
    董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003,10(1): 171−176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    DONG H B, WANG C L. Development and application of 2D resistivity imaging surveys[J]. Earth Science Frontiers, 2003, 10(1): 171−176. (in Chinese). doi: 10.3321/j.issn:1005-2321.2003.01.020
    [14]
    严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012,36(4): 576−584.

    YAN J Y, MENG G X, LV Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576−584. (in Chinese).
    [15]
    陈松, 余绍文, 刘怀庆, 等. 高密度电法在水文地质调查中的应用研究−以江平圩幅为例[J]. 地球物理学进展, 2017,32(2): 0849−0855. DOI: 10.6038/pg20170254.

    CHEN S, YU S W, LIU H Q, et al. Application and research high density electrical method in hydrogeological prospceting: A case study on Jiangping town map[J]. Progress in Geophysics, 2017, 32(2): 0849−0855. DOI: 10.6038/pg20170254. (in Chinese).
    [16]
    刘艳秋, 徐洪苗, 胡俊杰. 综合物探方法在水库堤坝隐患探测中的应用[J]. 工程地球物理学报, 2019,16(4): 546−551. DOI: 10.3969/j.issn.1672-7940.2019.04.018.

    LIU Y Q, XU H M, HU J J. Application of comprehensive geophysical exploration technique to detecting hidden defects of reservoir dams[J]. Chinese Journal of Engineering Geophysics, 2019, 16(4): 546−551. DOI: 10.3969/j.issn.1672-7940.2019.04.018. (in Chinese).
    [17]
    薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007,22(4): 1195−1200. doi: 10.3969/j.issn.1004-2903.2007.04.026

    XUE G Q, LI X, DI Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4): 1195−1200. (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.04.026
    [18]
    严良俊, 徐世浙, 胡文宝, 等. 中心回线瞬变电磁测深法快速电阻率成像方法及应用[J]. 煤田地质与勘探, 2002,30(6): 58−60. doi: 10.3969/j.issn.1001-1986.2002.06.020

    YAN L J, XU S Z, HU W B, et al. A rapid resistivity imaging method for central loop transient electromagnetic sounding and its application[J]. Coal Geology & Exploration, 2002, 30(6): 58−60. (in Chinese). doi: 10.3969/j.issn.1001-1986.2002.06.020
    [19]
    杨文钦, 胡东祥. 断层富水性的综合探测技术与应用[J]. 煤田地质与勘探, 2002,30(2): 51−53. doi: 10.3969/j.issn.1001-1986.2002.02.019

    YANG W Q, HU D X. The technology and it’s application survey for water-bearing condition of fault[J]. Coal Geology & Exploration, 2002, 30(2): 51−53. (in Chinese). doi: 10.3969/j.issn.1001-1986.2002.02.019
    [20]
    王庆, 石磊, 兰云飞, 等. 微小盆地倾斜煤层采空区瞬变电磁法探测[J]. CT理论与应用研究, 2020,29(5): 576−583. DOI: 10.15953/j.1004-4140.2020.29.05.08.

    WANG Q, SHI L, LAN Y F, et al. Detection of mine tunnels in inclined coal seam of small coal bearing basin using TEM[J]. CT Theory and Applications, 2020, 29(5): 576−583. DOI: 10.15953/j.1004-4140.2020.29.05.08. (in Chinese).
    [21]
    XUE G Q, ZHANG L B, ZHOU N N, et al. Development measurements of TEM sounding in China[J]. Geological Journal, 2019: 1−8. DOI: 10.1002/gj.3544.
    [22]
    彭赟, 李燕, 杨淮. 瞬变电磁法在积水采空区探测中的应用−以贵州某煤矿为例[J]. 工程地球物理学报, 2019,16(6): 849−855. doi: 10.3969/j.issn.1672-7940.2019.06.010

    PENG Y, LI Y, YANG H. Detection of water-accumulating goaf based on transient electromagnetic method: A case study of a coal mine in guizhou[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6): 849−855. (in Chinese). doi: 10.3969/j.issn.1672-7940.2019.06.010
    [23]
    日丹诺夫 M S. 地球物理反演理论与应用[M]. 底青云, 薛国强, 李貅, 等, 译. 北京: 科学出版社, 2018.
  • Related Articles

    [1]KANG Zhaoting, OUYANG Xuehui, CHAI Jun. Differential Diagnosis of COVID-19 and Community-acquired Pneumonia Using Different Machine Learning Methods[J]. CT Theory and Applications, 2023, 32(5): 685-694. DOI: 10.15953/j.ctta.2023.079
    [2]HAO Qi, LIU Xiaoyan, ZHANG Yan, LI Xingpeng, ZHANG Yimeng, LIU Mengke, ZHANG Xiaojie, LI Ling, GUO Jia, DU Changyue, SUN Ying, HUO Meng, ZHANG Mingxia, LIU Wei, DUAN Yongli, DUAN Shuhong, WANG Rengui. The Clinical Value of Thin-section Chest Computed Tomography Scan for the Classification of Coronavirus Disease 2019 (COVID-19)[J]. CT Theory and Applications, 2023, 32(5): 675-683. DOI: 10.15953/j.ctta.2023.041
    [3]LIU Xiaoyan, BAO Zhongying, DUAN Shuhong, ZHANG Jie, ZHANG Mingxia, SUN Ying, LI Ling, WANG Rengui. Clinical Characteristics and Imaging Features of COVID-19 at Initial Diagnosis in Fever Clinic[J]. CT Theory and Applications, 2023, 32(5): 636-644. DOI: 10.15953/j.ctta.2023.149
    [4]WANG Xing, YUAN Libo, WANG Wei, LIU Jiaojiao, ZHANG Yanyan, LI Hongjun, CHEN Budong. Chest Computed Tomography Findings of Patients with Severe COVID-19 Complicated with Other Pathogens[J]. CT Theory and Applications, 2023, 32(5): 613-620. DOI: 10.15953/j.ctta.2023.054
    [5]HUO Meng, LI Ling, SUN Ying, ZHANG Mingxia, SUN Lei, GUO Jia, DU Changyue, LI Xingpeng, HAO Qi, ZHANG Yan, DUAN Shuhong, LIU Xiaoyan, LIU Wei, DUAN Yongli, ZHANG Chunyan, WANG Rengui. Analysis of Coronavirus Disease 2019 Chest High-resolution Computed Tomography Manifestations between Groups with Different Neutrophil- to-Lymphocyte Ratios[J]. CT Theory and Applications, 2023, 32(3): 387-394. DOI: 10.15953/j.ctta.2023.027
    [6]ZHANG Mingxia, LI Ling, SUN Ying, GUO Jia, DU Changyue, LI Xingpeng, ZHANG Yan, HAO Qi, DUAN Shuhong, LIU Xiaoyan, SUN Lei, HUO Meng, ZHANG Chunyan, WANG Rengui. Comparative Analysis of Clinical and Computed Tomography Imaging Features of COVID-19 with Different Disease Courses[J]. CT Theory and Applications, 2023, 32(3): 380-386. DOI: 10.15953/j.ctta.2023.021
    [7]WU Tenghui, ZHA Yunfei, YANG Feng. The Study of Application of Different Pitch Combined with ASIR in Low-dose Chest CT Screening on COVID-19[J]. CT Theory and Applications, 2022, 31(2): 186-194. DOI: 10.15953/j.1004-4140.2022.31.02.05
    [8]WEI Dongxu, YAN Lihua, SHI Junqiang. COVID-19 Deep Learning Diagnosis Method Based on Attention Mechanism and Transfer Learning[J]. CT Theory and Applications, 2021, 30(4): 477-486. DOI: 10.15953/j.1004-4140.2021.30.04.08
    [9]SHEN Jing, YU Jing, YAN Yingnan, SANG Yarong, JU Ronghui, PAN Long, LI Guize, LI Xin, WU Jianlin. Chest CT Features of COVID-19 and Its Evolution[J]. CT Theory and Applications, 2021, 30(2): 199-207. DOI: 10.15953/j.1004-4140.2021.30.02.07
    [10]YAO Yonggang, DU Jingbo, LIAO Jianyong, GOU Zhenheng, FU Shunbin, JIN Erhu. Study of Chest CT Features of COVID-19[J]. CT Theory and Applications, 2020, 29(2): 169-176. DOI: 10.15953/j.1004-4140.2020.29.02.07
  • Cited by

    Periodical cited type(3)

    1. 李杰成,柳淘,余鑫鑫,许州,周霖,邓阳全,马杰,马切,刘勇涛. X波段可移动加速器CT的运动控制系统设计. 核电子学与探测技术. 2025(05): 705-711 .
    2. 黄嘉秋,须颖,林鹏程. X射线CT几何校正研究. 中国机械. 2025(10): 28-37 .
    3. 张凯杰,丁婷,桂志国,陈平,刘祎,张鹏程,汤豪威. 基于自适应加权增强总变差的CT偏置扫描重建算法. 中国体视学与图像分析. 2024(02): 126-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return