ISSN 1004-4140
CN 11-3017/P
LU X L, TAO J H, MA W T, et al. Differences in Volume Rendering Imaging Based on Different Algorithms in Assisting Detection of Linear Fracture of Nasal Bone Area[J]. CT Theory and Applications, 2024, 33(5): 609-618. DOI: 10.15953/j.ctta.2023.212. (in Chinese).
Citation: LU X L, TAO J H, MA W T, et al. Differences in Volume Rendering Imaging Based on Different Algorithms in Assisting Detection of Linear Fracture of Nasal Bone Area[J]. CT Theory and Applications, 2024, 33(5): 609-618. DOI: 10.15953/j.ctta.2023.212. (in Chinese).

Differences in Volume Rendering Imaging Based on Different Algorithms in Assisting Detection of Linear Fracture of Nasal Bone Area

More Information
  • Received Date: November 27, 2023
  • Revised Date: March 03, 2024
  • Accepted Date: March 03, 2024
  • Available Online: March 26, 2024
  • Objective: To explore the optimal reconstruction algorithm for volume rendering imaging (VR), improving the diagnostic efficacy of linear fractures of nasal bone area. Methods: Adult CT images of the nasal bone from August 2022 to August 2023 were retrospectively included, and 100 patients with linear fracture and 35 patients without fracture in the nasal region were randomly selected and underwent post-processing of VR with Smooth, Standard, Sharp, and Bone algorithms, respectively. Two radiologists scored the VR with and without fracture, the display of the nasal foramen, and the image quality in a double-blind method. The CT phantom was used for measuring the noise power spectrum (NPS), task transfer function (TTF) and detectability index (d) of the CT images of different reconstruction algorithms using the same scanning protocol. Results: The diagnostic efficacy for linear nasal fractures varied between VR_Standard, VR_Sharp, and VR_Bone, with higher scores for the display of the nasal foramen in VR_Sharp than in VR_Standard and higher image quality scores in VR_Sharp than in VR_Standard and VR_Bone. As the sharpness of the reconstruction algorithm increased, the amount of noise and spatial resolution gradually increased. The NPSpeak and TTF50% for the Standard, Sharp, and Bone groups were (225.85 HU2·mm2, 0.42), (416.67 HU2·mm2, 0.53), and (1888.20 HU2·mm2, 0.8), respectively. The Sharp group had the highest d value when the diameter of the target to be measured was 1 mm. Conclusion: VR_Sharp has the best diagnostic efficacy for linear fractures in the nasal region, which better utilizes the value of VR in aiding diagnosis.

  • [1]
    DAVARI R, PIRZADEH A, SATTARI F. Etiology and epidemiology of nasal bone fractures in patients referred to the otorhinolaryngology section, 2019[J]. International Archives of Otorhinolaryngology, 2023, 27(2): e234−e239. DOI: 10.1055/s-0043-1768208.
    [2]
    ZHANG P, ZHAO J, ZANG M, et al. Etiology of nasal bone fracture: A retrospective analysis of 1441 patients in China[J]. The Journal of Craniofacial Surgery, 2022, 33(4): 1185−1189. DOI: 10.1097/SCS.0000000000008479.
    [3]
    CHUKWULEBE S, HOGREFE C. The diagnosis and management of facial bone fractures[J]. Emergency Medicine Clinics of North America, 2019, 37(1): 137−151. DOI: 10.1016/j.emc.2018.09.012.
    [4]
    LANDEEN KC, KIMURA K, STEPHAN S J. Nasal fractures[J]. Facial Plastic Surgery Clinics of North America, 2022, 30(1): 23−30. DOI: 10.1016/j.fsc.2021.08.002.
    [5]
    LI L F, ZANG H R, HAN D M, et al. Nasal bone fractures: Analysis of 1193 cases with an emphasis on coincident adjacent fractures[J]. Facial Plastic Surgery & Aesthetic Medicine, 2020, 22(4): 249−254. DOI: 10.1089/fpsam.2020.0026.
    [6]
    陶建华, 曲晓霞, 康天良, 等. 容积再现成像在鼻区线性骨折中的诊断效能[J]. 实用放射学杂志, 2022, 38(8): 1233−1237. DOI: 10.3969/j.issn.1002-1671.2022.08.004.

    TAO J H, QU X X, KANG T L, et al. Diagnostic efficacy of volume rendering imaging in assisting detection of linear fracture of nasal bone area[J]. Journal of Practical Radiology, 2022, 38(8): 1233−1237. DOI: 10.3969/j.issn.1002-1671.2022.08.004. (in Chinese).
    [7]
    汪茂文, 檀思蕾, 刘霞, 等. 鼻区骨折MSCT图像后处理显示与诊断探讨[J]. 中国司法鉴定, 2017, (6): 56−60. DOI: 10.3969/j.issn.1671-2072.2017.06.009.

    WANG M W, TAN S L, LIU X, et al. Post processing of MSCT Images in forensic examination of nasal and paranasal bone fracture[J]. Chinese Journal of Forensic Sciences, 2017, (6): 56−60. DOI: 10.3969/j.issn.1671-2072.2017.06.009. (in Chinese).
    [8]
    SANDEEP R B, NAIK D, KENKERE D. Role of multidetector computed tomography in the evaluation of maxillofacial trauma[J]. Cureus, 2023, 15(2): e35008. DOI: 10.7759/cureus.35008.
    [9]
    SAMEI E, BAKALYAR D, BOEDEKER K L, et al. Performance evaluation of computed tomography systems: Summary of AAPM task group 233[J]. Medical Physics. 2019, 46(11): e735-e756. DOI: 10.1002/mp.13763.
    [10]
    曾令明, 邓涵, 吕琴, 等. 偏离等中心点对CT图像质量影响的体模研究[J]. 中华放射学杂志, 2022, 56(11): 1237−1241. DOI: 10.3760/cma.j.cn112149-20220710-00596.

    ZENG L M, DENG H, LV Q, et al. A phantom study of the effect of deviation from isocentric points on CT image quality[J]. Chinese Journal of Radiology, 2022, 56(11): 1237−1241. DOI:10.3760/cma.j.cn112149- 20220710-00596. (in Chinese).
    [11]
    GREFFIER J, FRANDON J, LARBI A, et al. CT iterative reconstruction algorithms: A task-based image quality assessment[J]. European Radiology, 2020, 30(1): 487−500. DOI: 10.1007/s00330-019-06359-6.
    [12]
    杨政君, 张昂, 陈勇, 等. 辐射剂量和管电压对CT图像质量的影响: 基于任务的图像质量评价[J]. CT理论与应用研究, 2022, 31(2): 211−217. DOI: 10.15953/j.ctta.2021.060.

    YANG Z J, ZHANG A, CHEN Y, et al. The effect of radiation dose and tube potential on image quality of CT: A task-based image quality assessment[J]. CT Theory and Applications, 2022, 31(2): 211−217. DOI: 10.15953/j.ctta.2021.060. (in Chinese).
    [13]
    陶建华, 曲晓霞, 张怀宇, 等. 成人鼻骨末端、鼻骨孔、鼻骨其他孔及咬合缝间骨型鼻颌缝的多层螺旋CT影像特征: 附1600例分析[J]. 中华解剖与临床杂志, 2022, 27(1): 1−7. DOI: 10.3760/cma.j.cn101202-20210428-00118.

    TAO J H, QU X X, ZHANG H Y, et al. Multi-slice spiral computed tomography of the morphology of the nasal bone end, foramen of nasal bone, accessory foramen of nasal bone, and nasomaxillary suture in 1600 cases[J]. Chinese Journal of Anatomy and Clinics, 2022, 27(1): 1−7. DOI: 10.3760/cma.j.cn101202-20210428-00118. (in Chinese).
    [14]
    原媛, 卢东生, 钟朝辉. 基于噪声功率谱的不同重建类型CT图像噪声分析[J]. 中国医学装备, 2017, 14(4): 32−35. DOI: 10.3969/J.ISSN.1672-8270.2017.04.007.

    YUAN Y, LU D S, ZHONG Z H. The noise analysis of CT imaging based on noise power spectrum of different reconstruction type[J]. China Medical Equipment, 2017, 14(4): 32−35. DOI: 10.3969/J.ISSN.1672-8270.2017.04.007. (in Chinese).
    [15]
    余晓锷, 高海英, 蔡凡伟, 等. 基于噪声功率谱的CT图像噪声评价[J]. 中国医学影像技术, 2014, 30(8): 1243−1246. DOI: 10.13929/j.1003-3289.2014.08.035.

    YU X E, GAO H Y, CAI F W, et al. Noise power spectrum-based evaluation of CT image noise[J]. Chinese Journal of Medical Imaging Technology, 2014, 30(8): 1243−1246. DOI: 10.13929/j.1003-3289.2014.08.035. (in Chinese).
  • Related Articles

    [1]CHEN Kang, DI Guidong, ZHANG Jiajia, ZHOU You, WU Yao, ZHANG Guangzhi. Reservoir Prediction Based on Improved U-Net Convolutional Neural Network[J]. CT Theory and Applications, 2021, 30(4): 403-416. DOI: 10.15953/j.1004-4140.2021.30.04.01
    [2]SUN Linjie. Prestack Seismic Inversion based on Trivariate Cauchy Distribution and Its Application in Commercial Gas Reservoir Prediction[J]. CT Theory and Applications, 2020, 29(5): 566-575. DOI: 10.15953/j.1004-4140.2020.29.05.07
    [3]WANG Jun, REN Xiongfeng, ZHANG Junhua, LI Qin, GUI Zhipeng. Thickness Prediction of Glutenite Favorable Reservoir Using PCA-RF Method[J]. CT Theory and Applications, 2020, 29(3): 311-318. DOI: 10.15953/j.1004-4140.2020.29.03.07
    [4]SANG Kai-heng, ZHANG Fan-chang. Prediction of Reservoir Parameters of Machine Learning Based on Fuzzy Rough Set[J]. CT Theory and Applications, 2018, 27(4): 455-464. DOI: 10.15953/j.1004-4140.2018.27.04.05
    [5]LI Zhong-ping, HE You-xiong, LI Mei, HAO Ya-ju, HUANG Han-dong, SHEN Jin-song. The Application of Pre-stack Wide-angle Inversion Method to Reservoir Prediction in Zhoufan Salt Basin[J]. CT Theory and Applications, 2018, 27(3): 329-338. DOI: 10.15953/j.1004-4140.2018.27.03.05
    [6]SHU Meng-cheng. The Application of Improved AVAZ Method in Predicting the Fractured Reservoir[J]. CT Theory and Applications, 2017, 26(1): 45-52. DOI: 10.15953/j.1004-4140.2017.26.01.06
    [7]LIANG Guo-hua, HUANG Han-dong, LIU Fu-yi, FU Chao, LIN Zhong-yue, WANG Xiang-hao, YANG Ya-di, MIAO Yu-xin, SHEN Jin-song, ZHANG Xiao-chen. Prediction of the Sweet Spots within Shale Gas Reservoirs by Using Nonlinear Inversion of Seismic Data Acquired from Baojing Area Hunan Province[J]. CT Theory and Applications, 2016, 25(3): 299-310. DOI: 10.15953/j.1004-4140.2016.25.03.06
    [8]LANG Dong-jiang, LUN Zeng-min, LÜ Cheng-yuan, PAN Wei-yi, SUN Ai-jun. Study of Tight Sandstone Reservoir Core Fluid Parameters by NMR[J]. CT Theory and Applications, 2015, 24(2): 251-259. DOI: 10.15953/j.1004-4140.2015.24.02.10
    [9]DU Xiang-dong. Reservoir Fluid Identification Utilizing the Information of Rock Modulus and Quality Factor[J]. CT Theory and Applications, 2013, 22(3): 409-420.
    [10]CAI Rui. Applications of Spectral Decomposition Technique to Reservoir Prediction[J]. CT Theory and Applications, 2003, 12(2): 22-25.
  • Cited by

    Periodical cited type(5)

    1. 詹林,潘剑伟,高健,张成丽,杨晨,钱伦,槐玉鹿. 基于局部加密的非结构化网格SNMR方法二维Occam反演研究. 地球物理学进展. 2024(03): 1089-1101 .
    2. 闫建波,余永鹏,杨彦成,王嘉文,谭浩,李昱霖. 采煤工作面地下水分布变化的综合物探应用研究. 煤炭技术. 2024(10): 96-101 .
    3. 唐塑,武银婷,邢浩,娄雪聪,石海涛. 高密度电法与瞬变电磁法在戈壁区找水的联合应用. CT理论与应用研究. 2023(01): 27-34 . 本站查看
    4. 卢向星,陈慈河,孙旭,杨晨,钱伦,潘剑伟. 高密度电阻率法联合自然电场法在滑坡探测中的应用研究. 中国水运. 2023(05): 150-152 .
    5. 彭菁. 单套制趋势下长航局系统电子会计凭证报销入账归档研究. 中国水运. 2023(09): 150-152 .

    Other cited types(2)

Catalog

    Article views (273) PDF downloads (30) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return