ISSN 1004-4140
CN 11-3017/P
Volume 28 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
LI Bingying, ZHANG Jiajia, TU Qicui, LIU Jiang, ZHANG Guangzhi, ZHAO Chen, ZHU Shengwei, FAN Xianggang. A Method for Directly Inverting Low Permeability “Sweet spot” by Using Elastic Impedance Equation[J]. CT Theory and Applications, 2019, 28(4): 407-416. DOI: 10.15953/j.1004-4140.2019.28.04.01
Citation: LI Bingying, ZHANG Jiajia, TU Qicui, LIU Jiang, ZHANG Guangzhi, ZHAO Chen, ZHU Shengwei, FAN Xianggang. A Method for Directly Inverting Low Permeability “Sweet spot” by Using Elastic Impedance Equation[J]. CT Theory and Applications, 2019, 28(4): 407-416. DOI: 10.15953/j.1004-4140.2019.28.04.01

A Method for Directly Inverting Low Permeability “Sweet spot” by Using Elastic Impedance Equation

More Information
  • Received Date: April 24, 2019
  • Available Online: November 07, 2021
  • Published Date: August 24, 2019
  • The "sweet spot" in low-permeability reservoirs is a very important geological target in the exploration and development of low-permeability oil and gas.It is of great significance to study the "sweet spot" prediction and identification methods for low-permeability reservoirs.Firstly, based on the definition of low-permeability "sweet plot", the sensitive elastic parameters of "sweet spot" are determined.On this basis, the elastic impedance inversion and "sweet spot" sensitive parameters prediction are proposed by the elastic impedance equation including the sensitive parameters of "sweet plot".This method reduces the cumulative error of indirect prediction of "sweet plot" and improves the accuracy of the "sweet plot" prediction.Combined with the Facies and fluids probabilities(FFP) technology, it achieves better results in the prediction of the "sweet plot" for the target area.
  • Cited by

    Periodical cited type(6)

    1. 郭晓蓉,任小玲. 基于模糊区域生长的医学图像分割. 计算机与数字工程. 2024(04): 1186-1190 .
    2. 刘俊明,李丹. 基于RepMLP的肺部CT图像分割. 电子测试. 2021(23): 43-45 .
    3. 鲍小丽,贾鹤鸣,郎春博. 基于改进蜻蜓算法的多阈值彩色图像分割. 计算机应用与软件. 2020(06): 234-241 .
    4. 伍冠楚,吴黎明,林耿萱,钟杨,蒋丹凤. 基于改进凸包法的肺实质CT图像分割. 自动化与信息工程. 2020(06): 18-22 .
    5. 孟俊祥,柏正尧,计雪伟. 基于CT影像分析的肺部疾病辅助诊断系统应用研究. 中国数字医学. 2019(03): 92-96 .
    6. 杨德武,隋岩. 64排螺旋CT图像后处理技术在胸部模体病灶鉴别中的价值分析. 中国医学装备. 2019(09): 28-30 .

    Other cited types(13)

Catalog

    Article views (363) PDF downloads (11) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return