ISSN 1004-4140
CN 11-3017/P
LI Guihua, WANG Jingqi, XU Yun, ZHANG Wenbo, WANG Shulin. Random Noise Simulation Method for Seismic Exploration Based on Typical Decomposition[J]. CT Theory and Applications, 2019, 28(6): 659-667. DOI: 10.15953/j.1004-4140.2019.28.06.03
Citation: LI Guihua, WANG Jingqi, XU Yun, ZHANG Wenbo, WANG Shulin. Random Noise Simulation Method for Seismic Exploration Based on Typical Decomposition[J]. CT Theory and Applications, 2019, 28(6): 659-667. DOI: 10.15953/j.1004-4140.2019.28.06.03

Random Noise Simulation Method for Seismic Exploration Based on Typical Decomposition

More Information
  • Received Date: September 06, 2019
  • Available Online: November 07, 2021
  • Published Date: December 24, 2019
  • With the development of mineral resources exploration, the seismic exploration and acquisition environment is more and more complex, and the received reflection seismic records often contain a lot of interference, which results in low signal-to-noise ratio, complex appearance and difficult to distinguish the effective information of field seismic data, which makes it difficult to extract and utilize the effective information in seismic records. Traditional numerical simulation records generally do not have a random interference noise background containing various causes. Although the processing effect of theoretical records is good, it is difficult to process the actual seismic data with low signal-to-noise ratio. Up to now, there are few forming theories for seismic random noise simulation methods, and there are some idealizations and limitations for the understanding of random noise characteristics of seismic exploration. In noise simulation, many studies add white noise which can be generally eliminated in subsequent superposition processing, and cannot be close to the actual data processing. Based on the classical decomposition theory of random functions and Marmousi model records, the additive random interference is calculated according to the coherence characteristics of the CMP gathers, which is more similar to the interference background of actual seismic data because of its similar coherence with CMP gathers records. This method can guide the design of field observation system for seismic exploration, post-processing and interpretation of seismic data.
  • Related Articles

    [1]XU Yuan, LIANG Junzheng, LIU Jie. Time-lapse CT Observations and Numerical Simulations of Thermal Damage to Granite at the Microscale[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.109
    [2]SHI Chuan, SUN Maorui, CHEN Chao, ZHENG Kai, ZHU Wei. Optimization and Verification of Observation Systems in Engineering Refraction Seismic Prospecting[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.199
    [3]TENG Houhua, HAN Zhanyi, ZHAO Shuo, YE Junlin, DING Renwei. Scattered Wave Simulation Method and Analysis of Influencing Factors[J]. CT Theory and Applications, 2024, 33(6): 761-771. DOI: 10.15953/j.ctta.2024.042
    [4]LIU Wenge, TU Wenmao, MOU Qisong, CHEN Kang, ZHOU Milu. Seismic Numerical Simulation Based on Half-precision Floating-point Number Optimization and OpenMP[J]. CT Theory and Applications, 2024, 33(3): 289-297. DOI: 10.15953/j.ctta.2023.177
    [5]YANG Qian, TIAN Gang, WANG Yi-min. Numerical Simulation of Hammer Source with Different Excitation Parameters[J]. CT Theory and Applications, 2018, 27(3): 281-291. DOI: 10.15953/j.1004-4140.2018.27.03.01
    [6]GONG Ming-ping, ZHANG Jun-hua, LIU Wen-ge, LIU Yang, WU Xi-yuan. The Seismic Wave Numerical Simulation and Characteristics Analysis in Anisotropic Medium[J]. CT Theory and Applications, 2017, 26(6): 661-668. DOI: 10.15953/j.1004-4140.2017.26.06.01
    [7]CAI Jun-tao, ZHAO Guo-ze, XU Xi-wei. The Study of Local Distortion in Magnetotelluric Using Three-dimensional Modeling[J]. CT Theory and Applications, 2017, 26(4): 391-402. DOI: 10.15953/j.1004-4140.2017.26.04.01
    [8]YU Lu-yang, TIAN Gang, WANG Yi-min. Numerical Simulation of Excitation Source with Medium of Different P-wave Velocity[J]. CT Theory and Applications, 2016, 25(3): 251-260. DOI: 10.15953/j.1004-4140.2016.25.03.01
    [9]LIU Rui-he, ZHOU Jian-ke, ZHOU Xue-feng, YIN Xing-yao, CAO Dan-ping. Finite Element Method with Arbitrary Quadrilateral Meshes for Numerical Modeling of Seismic Wave Based on Compact Storage[J]. CT Theory and Applications, 2015, 24(5): 667-680. DOI: 10.15953/j.1004-4140.2015.24.05.04
    [10]YAN Bin, ZHANG Feng, WEI Xing, ZHANG Jun, CUI Jin-xian. A Projection Simulation Method of the Three-dimensional Shepp-Logan Phantom on General Scan Trajectory[J]. CT Theory and Applications, 2013, 22(3): 469-477.
  • Cited by

    Periodical cited type(9)

    1. 颜颖,魏巍,宋丽君,管文敏,张婷婷,孙婧,安冉,杨正汉,魏璇,王振常. 人工智能辅助诊断软件探究新型冠状病毒肺炎核酸转阴后的肺部CT表现及其与入院时临床分型的关系. 临床和实验医学杂志. 2024(04): 337-340 .
    2. 刘瑞,武婷婷,勾少波,薛瑞红,贾燕茹,柴军. 不同时期新型冠状病毒感染胸部CT磨玻璃影的临床意义探讨. CT理论与应用研究. 2023(03): 339-346 . 本站查看
    3. 谷辛稼,陈一民. 基于U-Net的COVID-19病灶医学影像ZMINet分割模型. 计算机应用与软件. 2023(08): 235-243 .
    4. 张凯,柴军,刘瑞,赵建华,王璟琛. 人工智能定量分析新型冠状病毒感染不同病毒变异株CT特征. CT理论与应用研究. 2023(05): 595-602 . 本站查看
    5. 刘瑞,武婷婷,勾少波,薛瑞红,贾燕茹,柴军. 新型冠状病毒感染不同毒株的CT表现演变与临床转归的相关性分析. CT理论与应用研究. 2023(05): 627-635 . 本站查看
    6. 郝琪,刘晓燕,张妍,李兴鹏,张怡梦,刘梦珂,张晓杰,李玲,郭佳,杜常月,孙莹,霍萌,张明霞,刘薇,段永利,段淑红,王仁贵. 胸部薄层CT平扫对于重型新型冠状病毒感染的诊断价值. CT理论与应用研究. 2023(05): 675-683 . 本站查看
    7. 张海平,吴晓华,赵田瑞,贺毅,杨正汉. 急性肺动脉栓塞继发肺梗死CT特征分析. CT理论与应用研究. 2022(02): 227-235 . 本站查看
    8. 王亮,王鹏,侯晓圆,张俊修,李绍旦,杨明会. 重型和危重型新型冠状病毒肺炎病机特点探析. 山东中医药大学学报. 2022(05): 587-592 .
    9. 肖仕刚. 疫情管控事急从权“闭环管理”之应急法治回顾再检视. 贵州工程应用技术学院学报. 2022(04): 58-66 .

    Other cited types(2)

Catalog

    Article views (493) PDF downloads (22) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return