ISSN 1004-4140
CN 11-3017/P
XU Y, LIANG J Z, LIU J. Time-lapse CT Observations and Numerical Simulations of Thermal Damage to Granite at the Microscale[J]. CT Theory and Applications, 2025, 34(5): 1-11. DOI: 10.15953/j.ctta.2025.109. (in Chinese).
Citation: XU Y, LIANG J Z, LIU J. Time-lapse CT Observations and Numerical Simulations of Thermal Damage to Granite at the Microscale[J]. CT Theory and Applications, 2025, 34(5): 1-11. DOI: 10.15953/j.ctta.2025.109. (in Chinese).

Time-lapse CT Observations and Numerical Simulations of Thermal Damage to Granite at the Microscale

More Information
  • Received Date: March 24, 2025
  • Revised Date: April 24, 2025
  • Accepted Date: April 29, 2025
  • Available Online: June 19, 2025
  • At the micro-scale, the different minerals, pores, and microcracks in granite create heterogeneity, thereby impacting the formation and progression of microfractures. This study examined the generation and development of thermal cracks in a Westerly granite sample, using high-resolution, in-situ heating synchrotron CT observations from room temperature up to 395°C. The discrete element method was subsequently employed to create models based on the CT images, including different minerals and pre-existing pores and cracks, to simulate the development of thermal cracks. The CT images revealed small pores within and between the granite mineral grains, as well as numerous cracks between them. Newly formed thermal cracks were detected at approximately 100°C with larger cracks appearing at temperatures > 200°C, eventually resulting in a network of cracks. Numerical simulations using the discrete element method demonstrated that thermal cracks primarily develop at the interfaces between the different minerals. The temperature and distribution of simulated cracking correlate well with the CT observations. A comparison with model simulations without pre-existing pores showed that these pores resulted in lower thermal stress within the mineral grains and a lower initial temperature at which thermal cracks formed. This indicates that granite containing pre-existing pores/cracks would be damaged at temperatures of 200°C or lower. These findings enhance our understanding of the development of thermal damage in different granites and offer insights for predicting thermal damage in rocks.

  • [1]
    CHAKI S, TAKARLI M, AGBODJAN W P. Porosity, permeability and ultrasonic wave evolutions[J]. Construction and Building Materials, 2008, 22(7): 1456-1461. DOI: 10.1016/j.conbuildmat.2007.04.002.
    [2]
    CHEN S, YANG C, WANG G. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering, 2017, 110: 1533-1542. DOI: 10.1016/j.applthermaleng.2016.09.075.
    [3]
    FREIRE-LISTA D M, FORT R, VARAS-MURIEL M J. Thermal stress-induced microcracking in building granite[J]. Engineering Geology, 2016, 206: 83-93. DOI: 10.1016/j.enggeo.2016.03.005.
    [4]
    GAUTAM P K, DWIVEDI R, KUMAR A, et al. Damage characteristics of Jalore granitic rocks after thermal cycling effect for nuclear waste repository[J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 235-254. DOI: 10.1007/s00603-020-02260-7.
    [5]
    KUMARI W G P, RANJITH P G, PERERA M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments[J]. Engineering Geology, 2017, 229: 31-44. DOI: 10.1016/j.enggeo.2017.09.012.
    [6]
    SUMMERS R, WINKLER K, BYERLEE J. Permeability changes during the flow of water through westerly granite at temperatures of 100°C~400°C[J]. Journal of Geophysical Research, 1978, 83(B1): 339-344. DOI: 10.1029/JB083iB01p00339.
    [7]
    WANG H F, BONNER B P, CARLSON S R, et al. Thermal stress cracking in granite[J]. Journal of Geophysical Research, 1989, 94(B2): 1745-1758. DOI: 10.1029/JB094iB02p01745.
    [8]
    YANG S Q, RANJITH P G, JING H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics, 2017, 65: 180-197. DOI: 10.1016/j.geothermics.2016.09.008.
    [9]
    黄彦华, 陶然, 陈笑, 等. 高温后花岗岩断裂特性及热裂纹演化规律研究[J]. 岩土工程学报, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125.

    HUANG Y H, TAO R, CHEN X, et al. Fracture behavior and thermal cracking evolution law of granite specimens after high-temperature treatment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 739-747. DOI: 10.11779/CJGE20220125. (in Chinese).
    [10]
    WU Q, WENG L, ZHAO Y, et al. On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates[J]. Engineering Geology, 2019, 253: 94-110. DOI: 10.1016/j.enggeo.2019.03.014.
    [11]
    ZHANG F, ZHAO J, HU D, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment[J]. Rock Mechanics and Rock Engineering, 2018, 51: 677-694. DOI: 10.1007/s00603-017-1350-8.
    [12]
    万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报, 2008, 27(1): 72-77. DOI: 10.3321/j.issn:1000-6915.2008.01.011.

    WAN Z J, ZHAO Y S, DONG F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 72-77. DOI: 10.3321/j.issn:1000-6915.2008.01.011. (in Chinese).
    [13]
    陈宇, 徐能雄, 秦严, 等. 高温花岗岩遇水快速冷却后力学性质实验研究[J]. 力学与实践, 2019, 41(2): 171-177. DOI: 10.6052/1000-0879-18-297.

    CHEN Y, XU N X, QIN Y, et al. Experimental study of mechanical properties of water-cooled granite under high temperature[J]. Mechanics in Engineering, 2019, 41(2): 171-177. DOI: 10.6052/1000-0879-18-297. (in Chinese).
    [14]
    余莉, 彭海旺, 李国伟, 等. 花岗岩高温-水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035. DOI: 10.16285/j.rsm.2020.1154.

    YU L, PENG H W, LI G W, et al. Experimental study on granite under high temperature-water cooling cycle[J]. Rock and Soil Mechanics, 2021, 42(4): 1025-1035. DOI: 10.16285/j.rsm.2020.1154. (in Chinese).
    [15]
    贾蓬, 杨其要, 刘冬桥, 等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. DOI: 10.16285/j.rsm.2020.1383.

    JIA P, YANG Q Y, LIU D Q, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics, 2021, 42(6): 1568-1578. DOI: 10.16285/j.rsm.2020.1383. (in Chinese).
    [16]
    贾蓬, 王茵, 李博, 等. 高温遇水冷却岩石循环加卸载力学性能试验研究[J]. 北京理工大学学报, 2023, 43(2): 126-134. DOI: 10.15918/j.tbit1001-0645.2022.054.

    JIA P, WANG Y, LI B, et al. Experimental study on mechanical properties of water-cooled high temperature rock under cyclic loading[J]. Transactions of Beijing Institute of Technology, 2023, 43(2): 126-134. DOI: 10.15918/j.tbit1001-0645.2022.054. (in Chinese).
    [17]
    SHAO S, RANJITH P G, WASANTHA P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy[J]. Geothermics, 2015, 54: 96-108. DOI: 10.1016/j.geothermics.2014.11.005.
    [18]
    解瑾, 郤保平, 何水鑫, 等. 青海共和盆地花岗岩细观热损伤研究[J]. 太原理工大学学报, 2024, 55(6): 1-13. DOI: 10.16355/j.tyut.1007-9432.20230701.

    XIE J, XI B P, HE S X, et al. Microthermal damage of granite in Gonghe Basin, Qinghai Province[J]. Journal of Taiyuan University of Technology, 2024, 55(6): 1-13. DOI: 10.16355/j.tyut.1007-9432.20230701. (in Chinese).
    [19]
    THOMPSON B D, YOUNG R P, LOCKNER D A. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite[J]. Geophysical Research Letter, 2015, 32: 1-4. DOI: 10.1029/2005GL022750.
    [20]
    THOMPSON B D, YOUNG R P, LOCKNER D A. Fracture in westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation[J]. Pure and Applied Geophysics, 2006, 163: 995-1019. DOI: 10.1007/s00024-006-0054-x.
    [21]
    STANCHITS S, VINCIGUERRA S, DRESEN G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite[J]. Pure and Applied Geophysics, 2006, 163: 974-993. DOI: 10.1007/s00024-006-0059-5.
    [22]
    LOCKNER D A, BYERLEE J D, KUKSENKO V, et al. Chapter 1 observations of quasistatic fault growth from acoustic emissions[J]. International Geophysics, 1992, 51: 3-31. DOI: 10.1016/S0074-6142(08)62813-2.
    [23]
    赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28-34. DOI: 10.3321/j.issn:1000-6915.2008.01.005.

    ZHAO Y S , MENG Q R , KANG T H, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28-34. DOI: 10.3321/j.issn:1000-6915.2008.01.005. (in Chinese).
    [24]
    KUMARI W G, RANJITHA P P G, PERERAB M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138-154. DOI: 10.1016/j.fuel.2018.05.040.
    [25]
    GUO P, ZHANG P, BU M, et al. Microcracking behavior and damage mechanism of granite subjected to high temperature based on CT-GBM numerical simulation[J]. Computers and Geotechnics, 2023, 159: 105385. DOI: 10.1016/j.compgeo.2023.105385.
    [26]
    王嘉敏, 王守光, 李向上, 等. 热冲击花岗岩力学响应及损伤特征显微CT试验研究[J]. 煤炭科学技术, 2023, 51(8): 58-72. DOI: 10.13199/j.cnki.cst.2023-0180.

    WANG J M, WANG S G, LI X S, et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology, 2023, 51(8): 58-72. DOI: 10.13199/j.cnki.cst.2023-0180. (in Chinese).
    [27]
    FUSSEIS F, SCHRANK C E, LIU J. Thermal damage in Westerly granite investigated by means of Synchrotron radiation based microtomography[J]. EGU General Assembly: 9555.
    [28]
    SCHRANK C, FUSSEIS F, KARRECH A, et al. Thermal-elastic stresses and the criticality of the continental crust[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q09005. DOI: 10.1029/2012GC004085.
    [29]
    KNACKSTEDT M A, ARNS C H , SAADATFAR M, et al. Elastic and transport properties of cellular solids derived from three-dimensional tomographic images[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462: 2833-2862. DOI: 10.1098/rspa.2006.1657.
    [30]
    LIU J, SAROUT J, ZHANG M, et al. Computational upscaling of Drucker-Prager plasticity from micro-CT images of synthetic porous rock[J]. Geophysical Journal International, 2018, 212: 151-163. DOI: 10.1093/gji/ggx409.
    [31]
    DAUTRIAT J, BORNERT M, GLAND N, et al. Localized deformation induced by heterogeneities in porous carbonate analysed by multi-scale digital image correlation[J]. Tectonophysics, 2011, 503: 100-116. DOI: 10.1016/j.tecto.2010.09.025.
    [32]
    IP S C Y, BORJA R I. Modeling heterogeneity and permeability evolution in a compaction band using a phase-field approach[J]. Journal of the Mechanics and Physics of Solids, 2023: 181. DOI: 10.1016/j.jmps.2023.105441.
    [33]
    SHAHIN G, MARINELLI F, BUSCARNERA G. Viscoplastic interpretation of localized compaction creep in porous rock[J]. Journal of Geophysical Research: Solid Earth: 2019, 124(10): 124, 10180–10196. DOI: 10.1029/2019JB017498.
    [34]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. DOI: 10.1016/j.ijrmms.2004.09.011.
    [35]
    PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. DOI: 10.1002/2016JB013469.
    [36]
    PENG J, WONG L N Y, TEH C I. Influence of grain size on strength of polymineralic crystalline rock: New insights from DEM grain-based modeling[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(4): 755-766. DOI: 10.1016/j.jrmge.2021.01.011.
    [37]
    LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. DOI: 10.1007/s00603-018-1566-2.
    [38]
    ZHANG X P, JI P Q, PENG J, et al. A grain-based model considering pre-existing cracks for modelling mechanical properties of crystalline rock[J]. Computers and Geotechnics, 2020, 127: 103776. DOI: 10.1016/j.compgeo.2020.103776.
    [39]
    LIU J, PEREIRA G G G, LIU Q, et al. Computational challenges in the analyses of petrophysics using microtomography and upscaling: A review[J]. Computers and Geosciences, 2016, 89: 107–117. DOI: 10.1016/j.cageo.2016.01.014.
    [40]
    PETRUŽÁLEK M, JECHUMTÁLOVÁ Z, ŠÍLENÝ J, et al. Application of the shear-tensile source model to acoustic emissions in Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104246. DOI: 10.1016/j.ijrmms.2020.104246.
    [41]
    XU Z, LI T, CHEN G, et al. The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect[J]. KSCE Journal of Civil Engineering, 2018, 22(8): 2764-2775. DOI: 10.1007/s12205-017-1228-z.
  • Related Articles

    [1]TENG Houhua, HAN Zhanyi, ZHAO Shuo, YE Junlin, DING Renwei. Scattered Wave Simulation Method and Analysis of Influencing Factors[J]. CT Theory and Applications, 2024, 33(6): 761-771. DOI: 10.15953/j.ctta.2024.042
    [2]LI Guihua, WANG Jingqi, XU Yun, ZHANG Wenbo, WANG Shulin. Random Noise Simulation Method for Seismic Exploration Based on Typical Decomposition[J]. CT Theory and Applications, 2019, 28(6): 659-667. DOI: 10.15953/j.1004-4140.2019.28.06.03
    [3]YANG Qian, TIAN Gang, WANG Yi-min. Numerical Simulation of Hammer Source with Different Excitation Parameters[J]. CT Theory and Applications, 2018, 27(3): 281-291. DOI: 10.15953/j.1004-4140.2018.27.03.01
    [4]GONG Ming-ping, ZHANG Jun-hua, LIU Wen-ge, LIU Yang, WU Xi-yuan. The Seismic Wave Numerical Simulation and Characteristics Analysis in Anisotropic Medium[J]. CT Theory and Applications, 2017, 26(6): 661-668. DOI: 10.15953/j.1004-4140.2017.26.06.01
    [5]CAI Jun-tao, ZHAO Guo-ze, XU Xi-wei. The Study of Local Distortion in Magnetotelluric Using Three-dimensional Modeling[J]. CT Theory and Applications, 2017, 26(4): 391-402. DOI: 10.15953/j.1004-4140.2017.26.04.01
    [6]YU Lu-yang, TIAN Gang, WANG Yi-min. Numerical Simulation of Excitation Source with Medium of Different P-wave Velocity[J]. CT Theory and Applications, 2016, 25(3): 251-260. DOI: 10.15953/j.1004-4140.2016.25.03.01
    [7]LIU Rui-he, ZHOU Jian-ke, ZHOU Xue-feng, YIN Xing-yao, CAO Dan-ping. Finite Element Method with Arbitrary Quadrilateral Meshes for Numerical Modeling of Seismic Wave Based on Compact Storage[J]. CT Theory and Applications, 2015, 24(5): 667-680. DOI: 10.15953/j.1004-4140.2015.24.05.04
    [8]XIAO Wen, ZHANG Jun-hua, ZHANG Zai-jin, TAN Ming-you, ZHANG Yun-yin, CUI Shi-ling, QU Zhi-peng. Wave Field Numerical Simulation of Low Velocity Zone and Preliminary Analysis of Influencing Factors[J]. CT Theory and Applications, 2015, 24(3): 357-366. DOI: 10.15953/j.1004-4140.2015.24.03.04
    [9]MAO Ling-tao, BI Yu-jie, ZUO Jian-min, HAO Li-na, WANG Huan. Study on Building Geomaterial Numerical Model Method Based on CT Image[J]. CT Theory and Applications, 2010, 19(4): 27-34.
    [10]QIANG Jian-ke, XIONG Bin, RUAN Bai-yao. The Character Analysis of True and False Approximate Resistivity Anomaly in Numerical Modeling of 3-D Geo-electrical Model[J]. CT Theory and Applications, 2002, 11(1): 6-9.

Catalog

    Article views (23) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return