ISSN 1004-4140
CN 11-3017/P
LI J, YIN W S, LI Q, et al. Research and application of seismic frequency extension technology based on ghost wave attenuation and non-stationary multi-order differential algorithm[J]. CT Theory and Applications, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013. (in Chinese).
Citation: LI J, YIN W S, LI Q, et al. Research and application of seismic frequency extension technology based on ghost wave attenuation and non-stationary multi-order differential algorithm[J]. CT Theory and Applications, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013. (in Chinese).

Research and Application of Seismic Frequency Extension technology Based on Ghost Wave Attenuation and Non-stationary Multi-order Differential Algorithm

More Information
  • Received Date: October 08, 2021
  • Accepted Date: November 28, 2021
  • Available Online: February 23, 2022
  • Published Date: September 30, 2022
  • High-resolution seismic data can realize better well seismic calibration results,clearer structural interpretation and reservoir characterization, and also hold better identification ability of thin layers. In order to improve seismic resolution, it is necessary to carry out frequency extension processing on seismic data. The conventional seismic spectral broadening method used to be carried out in the frequency domain is susceptible to high-frequency noise and thus reduces the reliability of the data. In this paper we propose a time-domain frequency extension technology which is based on the combination of ghost wave processing and non-stationary multi-order differential resolution. The sesmic spectral can be broaded merely through multiple times of integration and differential operation, whose results are performed amplitude matching at Gaussian window to ensure the consistency of the amplitude before and after the processing. Weighted fusion is performed on the difference results, the high-order difference is assigned a smaller weight to avoid the influence from the high-frequency noise, and thus improve the anti-noise performance of the algorithm. The theoretical models and processing results of the field seismic data show that the algorithm can effectively improve the resolution of seismic data.
  • [1]
    FENG X K, WANG Y F, WANG X J, et al. The application of high-resolution 3D seismic acquisition techniques for carbonate reservoir characterization in China[J]. The Leading Edge, 2012, 31(2): 168−179. DOI: 10.1190/1.3686914.
    [2]
    MOLDOVEANU N, COMBEE L, EGAN M, et al. Over/under towed-streamer acquisition: A method to extend seismic bandwidth to both higher and lower frequencies[J]. The Leading Edge, 2007, 26(1): 41−58. DOI: 10.1190/1.2431831.
    [3]
    AMUNDSEN L, ZHOU H, REITAN A, et al. On seismic deghosting by spatial deconvolution[J]. Geophysics, 2013, 78(6): V267−V271. DOI: 10.1190/geo2013-0198.1.
    [4]
    刘建磊, 王修田. 海上地震虚反射相位剔除法反褶积[J]. 海洋地质与第四纪地质, 2002,22(4): 117−122. DOI: 10.16562/j.cnki.0256-1492.2002.04.018.

    LIU J L, WANG X T. Deconvolution by phase spectrum deghosting in marine seismic survey[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 117−122. DOI: 10.16562/j.cnki.0256-1492.2002.04.018. (in Chinese).
    [5]
    夏同星, 刘垒, 明君, 等. 渤海湾 X 油田气云区地震资料关键处理技术研究[J]. 石油物探, 2018,57(2): 283−291. DOI: 10.3969/j.issn.1000-1441.2018.02.014.

    XIA T X, LIU L, MING J, et al. Key processing technologies of seismic data for a gas cloud area in the X oilfield, Bohai Bay Basin[J]. Geophysical Prospecting for Petroleum, 2018, 57(2): 283−291. DOI: 10.3969/j.issn.1000-1441.2018.02.014. (in Chinese).
    [6]
    韦红, 宋俊亭, 田涛, 等. 基于相控的振幅补偿法在渤海 B 油田储层预测中的应用[J]. CT理论与应用研究, 2021,30(6): 681−690. DOI: 10.15953/j.1004-4140.2021.30.06.03.

    WEI H, SONG J T, TIAN T, et al. Application of Amplitude compensation method based on phase control in reservoir prediction of Bohai B Oil[J]. CT Theory and Applications, 2021, 30(6): 681−690. DOI: 10.15953/j.1004-4140.2021.30.06.03. (in Chinese).
    [7]
    ZHANG X W, HAN L G, ZHANG F J, et al. An inverse Q-filter algorithm based on stable wavefield continuation[J]. Applied Geophysics, 2007, 4(4): 263−270. DOI: 10.1007/s11770-007-0040-9.
    [8]
    ZHANG C, ULRYCH T J. Seismic absorption compensation: A least squares inverse scheme[J]. Geophysics, 2007, 72(6): R109−R114. DOI: 10.1190/1.2766467.
    [9]
    ZHANG G L, WANG X M, HE Z H. A stable and self-adaptive approach for inverse Q-filter[J]. Journal of Applied Geophysics, 2015, 116: 236−246. DOI: 10.1016/j.jappgeo.2015.03.012.
    [10]
    CHENG Q S, CHEN R, LI T. Simultaneous wavelet estimation and deconvolution of reflection seismic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 377−384. DOI: 10.1109/36.485115.
    [11]
    Van der BAAN M, PHAM D T. Robust wavelet estimation and blind deconvolution of noisy surface seismic[J]. Geophysics, 2008, 73(5): V37−V46. DOI: 10.1190/1.2965028.
    [12]
    ROSA A L R, ULRYCH T J. Processing via spectral modeling[J]. Geophysics, 1991, 56(8): 1244−1251. DOI: 10.1190/1.1443144.
    [13]
    管西竹, 陈宝书, 符力耘, 等. 基于波动方程的上下缆地震数据鬼波压制方法研究[J]. 地球物理学报, 2015,58(10): 3746−3757. DOI: 10.6038/cjg20151025.

    GUAN X Z, CHEN B S, FU L Y, et al. The study of a deghosting method of over/under streamer seismic data based on wave equation[J]. Chinese Journal of Geophysics, 2015, 58(10): 3746−3757. DOI: 10.6038/cjg20151025. (in Chinese).
    [14]
    DANILO R V. Stochastic sparse-spike deconvolution[J]. Geophysics, 2008, 73(1): R1−R9. DOI: 10.1190/1.2790584.
    [15]
    LU W K, LI F Y. Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram[J]. Geophysics, 2013, 78(2): V43−V51. DOI: 10.1190/geo2012-0125.1.
    [16]
    RAM I, COHEN I, RAZ S. Multichannel deconvolution of seismic signals using statistical MCMC methods[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2757−2770. DOI: 10.1109/tsp.2010.2042485.
    [17]
    陈传仁, 周熙襄. 小波谱白化方法提高地震资料的分辨率[J]. 石油地球物理勘探, 2000,35(6): 703−709. doi: 10.3321/j.issn:1000-7210.2000.06.003

    CHEN C R, ZHOU X X. Improving resolution of seismic data using wavelet spectrum whitening[J]. Oil Geophysical Prospecting, 2000, 35(6): 703−709. (in Chinese). doi: 10.3321/j.issn:1000-7210.2000.06.003
    [18]
    计子琦, 张学强, 张海江, 等. 基于VMD的随掘地震超前探测信号谱白化方法研究[J]. CT理论与应用研究, 2021,30(2): 148−160. DOI: 10.15953/j.1004-4140.2021.30.02.02.

    JI Z Q, ZHANG X Q, ZHANG H J, et al. Research on spectral whitening method of seismic while drilling ahead detection signals based on VMD[J]. CT Theory and Applications, 2021, 30(2): 148−160. DOI: 10.15953/j.1004-4140.2021.30.02.02. (in Chinese).
    [19]
    AMUNDSEN L, ZHOU H. Low-frequency seismic deghosting[J]. Geophysics, 2013, 78(2): WA15−WA20. DOI: 10.1190/geo2012-0276.1.
    [20]
    SAJID M, GHOSH D. A fast and simple method of spectral enhancement[J]. Geophysics, 2014, 79(3): V75−V80. DOI: 10.1190/geo2013-0179.1.
    [21]
    SAJID M, GHAZALI A R. Nonstationary differential resolution: An algorithm to improve seismic resolution[J]. Geophysics, 2018, 83(3): V149−V156. DOI: 10.1190/geo2016-0614.1.
  • Related Articles

    [1]WANG Xu, YANG Ying, YIN Shuo, WU Ge, DENG Gang, YIN Xiaoming, ZENG Qingyu, DENG Maosong. Study on the Optimal Dosage of Gadolinium Contrast Agent for Lower Extremity Artery CE-MRA Angiography[J]. CT Theory and Applications, 2022, 31(2): 203-210. DOI: 10.15953/j.ctta.2021.033
    [2]LI Gao-yang, ZHANG Dan, LV Liang, XING Yuan-yuan, WANG Ning, CHANG Ying-wei. Comparison of Image Quality of Iliac Vein in Lower Extremity Vein Direct Imaging by Multi-slice Spiral CT with Different Injection Rates[J]. CT Theory and Applications, 2018, 27(3): 401-409. DOI: 10.15953/j.1004-4140.2018.27.03.14
    [3]HAN Xin, TIAN Feng, YU Sheng-feng. Value of Multi-detector Row Computed Tomography on Preoperative T Staging of Gastric Cancer[J]. CT Theory and Applications, 2018, 27(2): 249-255. DOI: 10.15953/j.1004-4140.2018.27.02.13
    [4]XU Guan-zhen, CHEN Yu-feng, ZOU Wen-yuan, CAO Yang, HU Jiu-min, HOU Ming-wei, XIONG Liang, TONG Cheng-wen, JI Lei, YANG Qian-qian, ZHOU Lin, CAO Min. MSCT in TNM Staging and Surgical Pathology of Gastric Cancer Control Study[J]. CT Theory and Applications, 2015, 24(3): 429-435. DOI: 10.15953/j.1004-4140.2015.24.03.13
    [5]HONG Liang, YI Xu, YI Hong-bing. The Value Evaluation of Multi-slice Spiral CT in the Main Pulmonary Artery Hemodynamics of the Different Stages of Patients with Pneumoconiosis[J]. CT Theory and Applications, 2015, 24(2): 313-318. DOI: 10.15953/j.1004-4140.2015.24.02.17
    [6]YUAN Wei-jun, LI Ping, WANG Yan-mei, LIU Shun-shun, PANG Wei-qiang, SHI Shi-kui. MRI Subtraction Technique Combining DWI for Colorectal Cancer Can Study the Clinical Application of Preoperative Staging Diagnosis[J]. CT Theory and Applications, 2014, 23(6): 1001-1009.
    [7]SUN Xiao-li, WANG Ren-gui, ZHANG Fu-xian, YANG Lei, LI Hai-lei, DUAN Yong-li, ZHAO Jun, FU Yan. The Value of 256iCT Angiography in Lower Extremity Arteriosclerotic Occlusive Disease[J]. CT Theory and Applications, 2012, 21(3): 535-541.
    [8]ZHANG Yi, DENG Li-gang, JIN Er-hu, LIANG Yu-ting, GUAN Wei. Clinical Application of MR Angiography of Whole Lower Extremity Artery[J]. CT Theory and Applications, 2010, 19(3): 75-81.
    [9]LI Da-sheng, SUN Yong-guang. CT Angiography of Lower Extremities and Aortoiliac System Evaluation by Multi-detector row helical CT[J]. CT Theory and Applications, 2005, 14(3): 61-64.
    [10]WANG Fu-qi. CT Staging of Renal Cell Carcinoma:Analysis of 41 Cases[J]. CT Theory and Applications, 2002, 11(3): 23-25.
  • Cited by

    Periodical cited type(2)

    1. 刘梦珂,张怡梦,张妍,李兴鹏,郝琪,张晓杰,徐井旭,黄陈翠,王仁贵. 基于STIR-MRI的影像组学模型评估原发性下肢淋巴水肿的临床分期. 放射学实践. 2024(04): 517-522 .
    2. 刘梦珂,田宇驰,李滨,李兴鹏,张怡梦,张晓杰,冯吉雪,王仁贵. 基于阈值分割法的原发性下肢淋巴水肿成分分析初步研究. 临床放射学杂志. 2024(07): 1181-1186 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return