ISSN 1004-4140
CN 11-3017/P
LI J, YIN W S, LI Q, et al. Research and application of seismic frequency extension technology based on ghost wave attenuation and non-stationary multi-order differential algorithm[J]. CT Theory and Applications, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013. (in Chinese).
Citation: LI J, YIN W S, LI Q, et al. Research and application of seismic frequency extension technology based on ghost wave attenuation and non-stationary multi-order differential algorithm[J]. CT Theory and Applications, 2022, 31(5): 567-576. DOI: 10.15953/j.ctta.2021.013. (in Chinese).

Research and Application of Seismic Frequency Extension technology Based on Ghost Wave Attenuation and Non-stationary Multi-order Differential Algorithm

More Information
  • Received Date: October 08, 2021
  • Accepted Date: November 28, 2021
  • Available Online: February 23, 2022
  • Published Date: September 30, 2022
  • High-resolution seismic data can realize better well seismic calibration results,clearer structural interpretation and reservoir characterization, and also hold better identification ability of thin layers. In order to improve seismic resolution, it is necessary to carry out frequency extension processing on seismic data. The conventional seismic spectral broadening method used to be carried out in the frequency domain is susceptible to high-frequency noise and thus reduces the reliability of the data. In this paper we propose a time-domain frequency extension technology which is based on the combination of ghost wave processing and non-stationary multi-order differential resolution. The sesmic spectral can be broaded merely through multiple times of integration and differential operation, whose results are performed amplitude matching at Gaussian window to ensure the consistency of the amplitude before and after the processing. Weighted fusion is performed on the difference results, the high-order difference is assigned a smaller weight to avoid the influence from the high-frequency noise, and thus improve the anti-noise performance of the algorithm. The theoretical models and processing results of the field seismic data show that the algorithm can effectively improve the resolution of seismic data.
  • [1]
    FENG X K, WANG Y F, WANG X J, et al. The application of high-resolution 3D seismic acquisition techniques for carbonate reservoir characterization in China[J]. The Leading Edge, 2012, 31(2): 168−179. DOI: 10.1190/1.3686914.
    [2]
    MOLDOVEANU N, COMBEE L, EGAN M, et al. Over/under towed-streamer acquisition: A method to extend seismic bandwidth to both higher and lower frequencies[J]. The Leading Edge, 2007, 26(1): 41−58. DOI: 10.1190/1.2431831.
    [3]
    AMUNDSEN L, ZHOU H, REITAN A, et al. On seismic deghosting by spatial deconvolution[J]. Geophysics, 2013, 78(6): V267−V271. DOI: 10.1190/geo2013-0198.1.
    [4]
    刘建磊, 王修田. 海上地震虚反射相位剔除法反褶积[J]. 海洋地质与第四纪地质, 2002,22(4): 117−122. DOI: 10.16562/j.cnki.0256-1492.2002.04.018.

    LIU J L, WANG X T. Deconvolution by phase spectrum deghosting in marine seismic survey[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 117−122. DOI: 10.16562/j.cnki.0256-1492.2002.04.018. (in Chinese).
    [5]
    夏同星, 刘垒, 明君, 等. 渤海湾 X 油田气云区地震资料关键处理技术研究[J]. 石油物探, 2018,57(2): 283−291. DOI: 10.3969/j.issn.1000-1441.2018.02.014.

    XIA T X, LIU L, MING J, et al. Key processing technologies of seismic data for a gas cloud area in the X oilfield, Bohai Bay Basin[J]. Geophysical Prospecting for Petroleum, 2018, 57(2): 283−291. DOI: 10.3969/j.issn.1000-1441.2018.02.014. (in Chinese).
    [6]
    韦红, 宋俊亭, 田涛, 等. 基于相控的振幅补偿法在渤海 B 油田储层预测中的应用[J]. CT理论与应用研究, 2021,30(6): 681−690. DOI: 10.15953/j.1004-4140.2021.30.06.03.

    WEI H, SONG J T, TIAN T, et al. Application of Amplitude compensation method based on phase control in reservoir prediction of Bohai B Oil[J]. CT Theory and Applications, 2021, 30(6): 681−690. DOI: 10.15953/j.1004-4140.2021.30.06.03. (in Chinese).
    [7]
    ZHANG X W, HAN L G, ZHANG F J, et al. An inverse Q-filter algorithm based on stable wavefield continuation[J]. Applied Geophysics, 2007, 4(4): 263−270. DOI: 10.1007/s11770-007-0040-9.
    [8]
    ZHANG C, ULRYCH T J. Seismic absorption compensation: A least squares inverse scheme[J]. Geophysics, 2007, 72(6): R109−R114. DOI: 10.1190/1.2766467.
    [9]
    ZHANG G L, WANG X M, HE Z H. A stable and self-adaptive approach for inverse Q-filter[J]. Journal of Applied Geophysics, 2015, 116: 236−246. DOI: 10.1016/j.jappgeo.2015.03.012.
    [10]
    CHENG Q S, CHEN R, LI T. Simultaneous wavelet estimation and deconvolution of reflection seismic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 377−384. DOI: 10.1109/36.485115.
    [11]
    Van der BAAN M, PHAM D T. Robust wavelet estimation and blind deconvolution of noisy surface seismic[J]. Geophysics, 2008, 73(5): V37−V46. DOI: 10.1190/1.2965028.
    [12]
    ROSA A L R, ULRYCH T J. Processing via spectral modeling[J]. Geophysics, 1991, 56(8): 1244−1251. DOI: 10.1190/1.1443144.
    [13]
    管西竹, 陈宝书, 符力耘, 等. 基于波动方程的上下缆地震数据鬼波压制方法研究[J]. 地球物理学报, 2015,58(10): 3746−3757. DOI: 10.6038/cjg20151025.

    GUAN X Z, CHEN B S, FU L Y, et al. The study of a deghosting method of over/under streamer seismic data based on wave equation[J]. Chinese Journal of Geophysics, 2015, 58(10): 3746−3757. DOI: 10.6038/cjg20151025. (in Chinese).
    [14]
    DANILO R V. Stochastic sparse-spike deconvolution[J]. Geophysics, 2008, 73(1): R1−R9. DOI: 10.1190/1.2790584.
    [15]
    LU W K, LI F Y. Seismic spectral decomposition using deconvolutive short-time Fourier transform spectrogram[J]. Geophysics, 2013, 78(2): V43−V51. DOI: 10.1190/geo2012-0125.1.
    [16]
    RAM I, COHEN I, RAZ S. Multichannel deconvolution of seismic signals using statistical MCMC methods[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2757−2770. DOI: 10.1109/tsp.2010.2042485.
    [17]
    陈传仁, 周熙襄. 小波谱白化方法提高地震资料的分辨率[J]. 石油地球物理勘探, 2000,35(6): 703−709. doi: 10.3321/j.issn:1000-7210.2000.06.003

    CHEN C R, ZHOU X X. Improving resolution of seismic data using wavelet spectrum whitening[J]. Oil Geophysical Prospecting, 2000, 35(6): 703−709. (in Chinese). doi: 10.3321/j.issn:1000-7210.2000.06.003
    [18]
    计子琦, 张学强, 张海江, 等. 基于VMD的随掘地震超前探测信号谱白化方法研究[J]. CT理论与应用研究, 2021,30(2): 148−160. DOI: 10.15953/j.1004-4140.2021.30.02.02.

    JI Z Q, ZHANG X Q, ZHANG H J, et al. Research on spectral whitening method of seismic while drilling ahead detection signals based on VMD[J]. CT Theory and Applications, 2021, 30(2): 148−160. DOI: 10.15953/j.1004-4140.2021.30.02.02. (in Chinese).
    [19]
    AMUNDSEN L, ZHOU H. Low-frequency seismic deghosting[J]. Geophysics, 2013, 78(2): WA15−WA20. DOI: 10.1190/geo2012-0276.1.
    [20]
    SAJID M, GHOSH D. A fast and simple method of spectral enhancement[J]. Geophysics, 2014, 79(3): V75−V80. DOI: 10.1190/geo2013-0179.1.
    [21]
    SAJID M, GHAZALI A R. Nonstationary differential resolution: An algorithm to improve seismic resolution[J]. Geophysics, 2018, 83(3): V149−V156. DOI: 10.1190/geo2016-0614.1.

Catalog

    Article views (415) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return