Citation: | LIU J, SONG N, PAN J X, et al. Dense reconstruction algorithm of sparse light-field based on optical flow method[J]. CT Theory and Applications, 2022, 31(2): 173-185. DOI: 10.15953/j.ctta.2021.052. (in Chinese). |
[1] |
IHRKE I, RESTREPO J, MIGNARD-DEBISE L. Principles of light field imaging: Briefly revisiting 25 years of research[J]. IEEE Signal Processing Magazine, 2016, 33(5): 59−69. doi: 10.1109/MSP.2016.2582220
|
[2] |
REN N, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[J]. Stanford University Cstr, 2005, 2(1): 1−11.
|
[3] |
WILBURN B, JOSHI N, VAISH V, et al. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics, 2005, 24(3): 765−776. doi: 10.1145/1073204.1073259
|
[4] |
STA B, LU Z, WZA B, et al. Quality assessment of DIBR-synthesized views: An overview[J]. Neurocomputing, 2021, 423: 158−178. doi: 10.1016/j.neucom.2020.09.062
|
[5] |
ZHOU W, LIU G, SHI J, et al. Depth-guided view synthesis for light field reconstruction from a single image[J], Image and Vision Computing, 2020, 95(c): 103874.
|
[6] |
JING X, MA Y, ZHAO Q, et al. Light field reconstruction using dynamically generated filters[J]. Springer, Cham, 2020: 3−13.
|
[7] |
焦鹏飞, 李亮, 赵骥. 压缩感知在医学图像重建中的最新进展[J]. CT理论与应用研究, 2012,21(1): 133−147.
JIAO P F, LI L, ZHAO J. New advances of compressed sensing in medical image reconstruction[J]. CT Theory and Applications, 2012, 21(1): 133−147. (in Chinese).
|
[8] |
CAO X, GENG Z, et al. Dictionary-based light field acquisition using sparse camera array[J]. Optics Express, 2014, 22(20): 24081−24095. doi: 10.1364/OE.22.024081
|
[9] |
王飞, 王昊, 卞耀明, 等. 深度学习在计算成像中的应用[J]. 光学学报, 2020,40(1): 0111002. doi: 10.3788/AOS202040.0111002
WANG F, WANG H, BIAN Y M, et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 2020, 40(1): 0111002. (in Chinese). doi: 10.3788/AOS202040.0111002
|
[10] |
FLYNN J, NEULANDER I, PHILBIN J, et al. Deep stereo: Learning to predict new views from the world's imagery[C]//IEEE Computer Society, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D C, USA: 2016: 5515-5524.
|
[11] |
李坤, 毛亚丽, 马健, 等. 稀疏光场的密集重建方法[J]. 中国科技论文, 2018,13(20): 2317−2322. doi: 10.3969/j.issn.2095-2783.2018.20.006
LI K, MAO Y L, MA J, et al. Dense reconstruction for sparsely-sampled light field[J]. China Sciencepapter, 2018, 13(20): 2317−2322. (in Chinese). doi: 10.3969/j.issn.2095-2783.2018.20.006
|
[12] |
王伟健. 基于DIBR的虚拟视点合成算法研究[D]. 武汉: 华中科技大学, 2016.
|
[13] |
GIBSON J J. The perception of the visual world[M]. Oxford, England: Houghton Mifflin, 1950.
|
[14] |
都雪静, 张美欧. 基于光流法与背景建模法融合的车道线识别算法研究[J]. 重庆理工大学学报(自然科学), 2021,35(3): 29−35, 99.
DU X J, ZHANG M O. Based on fusing optical flow method and background, odeling for lane line recognition[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(3): 29−35, 99. (in Chinese).
|
[15] |
HARTMANN C, WANG J, OPRISTESCU D, et al. Implementation and evaluation of optical flow methods for two-dimensional deformation measurement in comparison to digital image correlation[J]. Optics & Lasers in Engineering, 2018, 107(aug.): 127−141.
|
[16] |
於小杰, 贺勇, 刘盛华. 一种用于无人机室内定位的改进ORB光流算法[J]. 计算机工程与应用, 2021, 57(4): 266-271.
SHI X J, HE Y, LIU S H. An improved orb optical flow algorithm for UAV indoor positioning[J]. Computer Engineering and Applications, 2021, 57(4): 266-271. (in Chinese).
|
[17] |
GANG Z, TANG S, LI J. Face landmark point tracking using LK pyramid optical flow[C]//Tenth International Conference on Machine Vision (ICMV 2017). 2018.
|
[18] |
赵于平, 金熙, 赵松年. 光场成像中的景深扩展方法与信息处理[J]. 现代电子技术, 2016,39(4): 102−107.
ZHAO Y P, JING X, ZHAO S N. Scene depth extension method and information processing in light field imaging[J]. Modern Electronics Technique, 2016, 39(4): 102−107. (in Chinese).
|
[19] |
李亚楠, 赵耀, 林春雨, 等. 基于图像分割的金字塔Lucas-Kanade光流法提取深度信息[J]. 铁道学报, 2015,37(1): 63−68. doi: 10.3969/j.issn.1001-8360.2015.01.010
LI Y N, ZHAO Y, LIN C Y, et al. Depth information extraction with pyramid lucas-kanade optical flow method based on image segmentation[J]. Journal of the China Railway Society, 2015, 37(1): 63−68. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.01.010
|
[20] |
HONAUER K, JOHANNSEN O, KONDERMANN D, et al. A dataset and evaluation methodology for depth estimation on 4d light fields[M]. Asian Conference on Computer Vision, 2016: 19-34.
|
[21] |
佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006,11(12): 1758−1763. doi: 10.11834/jig.2006012307
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006, 11(12): 1758−1763. (in Chinese). doi: 10.11834/jig.2006012307
|
[22] |
夏正德, 宋娜, 刘宾, 等. 基于字典学习的稠密光场重建算法[J]. 物理学报, 2020,69(6): 064201. doi: 10.7498/aps.69.20191621
XIA Z D, SONG N, LIU B, et al. Dense light field reconstruction algorithm based on dictionary learning[J]. Acta Physica Sinica, 2020, 69(6): 064201. (in Chinese). doi: 10.7498/aps.69.20191621
|